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Motivation Cosmic rays as messengers

• What are their sources?

• Can we observe primordial anti-matter?

• What is the nature of dark matter?

Cosmic rays as actors

• Produce diffuse radiation

• Generate turbulence

• Ionise dense molecular clouds

• Provide pressure support

• Reheat the universe (?)
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The cosmic ray spectrum
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• ∼ 12 orders of magnitude
in energy

• ∼ power law dJ/dE ∝ E−3

with some features

Where is the transition from
galactic to extragalactic sources?

→ three arguments
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Spectral argument
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Anisotropy argument (1)

• Angular distribution of CRs is very isotropic

• E.g., the dipole anisotropy a ≡ φmax − φmin

φmax + φmin

• Between a few GeV and a PeV: a = O(10−4 . . . 10−3)
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Anisotropy argument (2)

• Sources are discrete

• If CRs were travelling balistically, would
expect O(1) anisotropy

• See, e.g., electro-magnetic radiation

• CRs are distributed very isotropically

→ Need to isotropise CRs

• (Coulomb) collisions with interstellar
matter too infrequent

Isotropisation by magnetic field requires gyroradius ≤ (size of Galaxy)

rg =
pc

eB
' 1 pc

( pc

PeV

)( B

µG

)−1

= 1 kpc
( pc

EeV

)( B

µG

)−1

Can only isotropise CRs with E . 1018 eV
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Emax argument

• Shock acceleration:

tacc ≈ 10
κ(E)

U2
shock

• Diffusion coefficient depends on turbulence level η ≥ 1:

κ(E) = 3× 1022 cm2 s−1 η−1

(
B

µG

)−1(
E

1 GeV

)
• Maximum energy when tacc = tlife:

Emax

GeV
≈ tlifeU

2
shock

10κ(1 GeV)
' 104η

(
tlife

104 yr

)(
Ushock

1000 km s−1

)2(
B

µG

)
Lagage & Cesarsky (1983)

→ Amplification of magnetic fields, e.g. non-resonant instability Bell (2004)

Acceleration in SNRs: Emax . 1015 eV
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Transition summary

• Spectral argument: Etrans ∼ 5× 1018 eV

• Anisotropy argument: Etrans . 1018 eV

• Emax argument: Etrans . 1015 eV

Working definition:

Galactic CRs ≡ CRs with energies E . 1015 eV
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The cosmic ray spectrum
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Space experiments: AMS-02, CALET, DAMPE, Fermi-LAT

Balloon experiments:

CREAM

HELIX
GAPS

Surface detectors:

HAWC, IceTop, Auger, TA, LHAASO

Fluorescence detectors:

Auger, TA

Cosmic ray
airshower

IceCube

Cherenkov telescopes:

HESS, VERITAS, MAGIC
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Where do CRs come from?
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The cosmic ray spectrum
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Powerlaws in astrophysics

Scale invariance

y = f (x) = Axβ

f (λx) = Aλβxβ ∝ xβ

Examples

• Spectrum of density perturbations in early universe

• Initial mass function of stars

• Power spectrum of (magneto-)hydrodynamic turbulence

• Energy or frequency spectra of astrophysical sources

• . . .
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A gambling analogy

• Amount p; probability of not having lost N

• Chance of losing q: Ni+1 = Ni (1− q)

• Fractional gain g : pi+1 = pi (1 + g)

• Probability of having more than pn: N(> pn) = Nn

lnN(> pn) = ln(1− q)n ' −nq
ln pn/p0 = ln(1 + g)n ' ng

}
⇒ N(> pn) =

(
pn
p0

)−q/g

=

∫ pn

p0

dp
dN

dp

dN

dp
∝
(

p

p0

)−(1+q/g)

Diffusive shock acceleration

• Prob. of escape: q = Ush
v

• fractional gain: g = ∆p
p

= Ush
v

• spectrum: dN
dp
∝ p−2
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Anisotropy

Between a few GeV and a PeV: a = O(10−4 . . . 10−3)

• Sources are discrete

• If CRs were travelling balistically, would
expect O(1) anisotropy

• See, e.g., electro-magnetic radiation

• CRs are distributed very isotropically

→ Need to isotropise CRs

• (Coulomb) collisions with interstellar
matter too infrequent

• Scattering of charged particles with turbulent
magnetic field isotropises particle directions

→ Particles perform a random walk in space:

〈(∆r)2〉 ∝ ∆t

• The constant of proportionality is called the
diffusion coefficient κ
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Rigidity

• Charged particles subject to Lorentz force:

dp

dt
=

Ze

c
(v × B)

⇔ mγv
dv̂

dt
=

Ze

c
vB(v̂ × B̂)

⇔ 1

B

pc

Ze︸︷︷︸
≡R

dv̂

ds
= v̂ × B̂ with s = vt

• Here, R = pc
Ze

is called the rigidity and s = vt is the path length

• For relativistic nuclei, rigidity = 2× (energy per nucleon):

eR =
pc

Z
' E

Z
=

A

Z

E

A
' 2

E

A

Particle spectra should look the same in rigidity or energy per nucleon
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Composition

• Some species have same abundances in CRs and in solar system → primaries

• Other species are overabundant with respect to solar abundances:
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Solar system (Lodders, ApJ 591, 1220 (2003))

Cosmic ray flux at Ek/n = 20 GeV/n

→ Must have been produced during the transport → secondaries
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Approximation

• Work in the “straight-ahead-approximation”: momentum or kinetic energy is equally
shared among constituent nucleons, e.g.:

Ekin,B = 11En,B = 11En,C =
11

12
Ekin,C

• If we formulate our eqs. in terms of energy per nucleon En, can directly relate the
production of boron with destruction of carbon:

d2NB

dEn dt
= − d2NC

dEn dt
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Slab model

sources matter density observer

• Somewhat model-independent way of quantifying the confinement

grammage X ≡
∫

ds ρ(s) = sρ̄

→ Amount of matter ρ that CRs traverse

• Consider number of primary and secondary CRs, N1 and N2:

dN1

dX
= −N1

λ1

dN2

dX
= −N2

λ2
+ BR1→2

N1

λ1

where λ1,2 = (σ1,2/m)−1 is the inverse of the specific cross-section and
BR1→2 is the branching ratio.
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Grammage

• Let N1(0) = N0, N2(0) = 0 and solve for secondary-to-primary ratio:

N2

N1
= BR1→2

λ2

λ2 − λ1

(
exp

[
− X

λ2
+

X

λ1

]
− 1

)

grammage X

N1(X )

N2(X )

grammage X

N2(X )/N1(X )

0.3

7.2 g/cm2

Example: Boron-to-carbon ratio

• We know the cross-sections, λC ' 6.7 g cm−2, λB ' 10 g cm−2 and branching
ratio, BRC→B ' 0.35

• At low energies, N2/N1 ' 0.3

→ X ' 7.2 g cm−2
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Grammage

• Where does the grammage come from?

• If CRs traverse the Galactic disk, every crossing contributes

∆X ∼ hmNngas ' (100 pc)(1.7× 10−24 g)(1 cm−3) ' 5× 10−4 g cm−2

• (1 pc ' 3.1× 1018 cm)

CRs must cross the disk many times, e.g. through diffusion

• Residence time in disk:

tesc =
s

v
=

X

v ρ̄
=

X

v mN n̄gas
' 3× 106 yr

for ngas = 1 cm−3
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Leaky box model

• Three processes:
Escape at rate 1/tesc

Production by spallation Γj→i = vn̄gasσj→i = vn̄gasσjBRj→i

Destruction by spallation Γi = vn̄gasσi

→ Coupled set of equations for N1,2:

dN1

dt
= − N1

tesc
− N1Γ1 + Q1

dN2

dt
= − N2

tesc
− N2Γ2 + Γ1→2N1

• In steady state (dNi/dt ≡ 0):

N1 =
Q1

1/tesc + Γ1

N2 =
Γ1→2

1/tesc + Γ2
N1 =

σjBR1→2

1/(vtescn̄gas) + σ2
N1

→ How to break degeneracy between tesc and n̄gas?
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Cosmic ray clocks

→ How to break degeneracy between tesc and n̄gas?

• Use unstable nuclei: life time breaks the degeneracy!

• 9Be is stable, 10Be has a half life τ10 ' 1.4× 106 yr and decays to 10B

• Equation for 9Be

N9 =
ΓCNO→9

1/tesc + Γ9
NCNO

• Equation for 10Be

N10 =
ΓCNO→10

1/tesc + Γ10 + 1/τ10
NCNO

• and so the ratio is
N10

N9
=

ΓCNO→10

ΓCNO→9

1/tesc + Γ9

1/tesc + Γ10 + 1/τ10

Comparison with data: n̄gas ∼ 0.1 cm−3, much lower than in disk
⇒ CRs spend only fraction of time in disk, rest of time

in extended CR halo, zmax/h ∼ 10
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Isotopes
Derome et al., PoS (ICRC2021) 119

• ∆M ' 1 amu

→ no event-by-event analysis,
but use shape of mass distribution

Temp7 × ϕ7
Temp9 × ϕ9

Temp10 × ϕ10

16

Beryllium	Isotopic	Flux	ratios	vs	Ekn

Flux	ratios Errors Total	correlation	
matrices

Preliminary	data,	refer	to	
upcoming	AMS	publication

16

Beryllium	Isotopic	Flux	ratios	vs	Ekn

Flux	ratios Errors Total	correlation	
matrices

Preliminary	data,	refer	to	
upcoming	AMS	publication

• Also 2H/1H and 3He/4He
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Rigidity-dependent grammage

Aguilar et al., PRL 117 (2016) 231102
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Rigidity-dependent grammage

• While B/C ∼ 0.3 at a few GV, it decreases with increasing rigidity

⇒ X (R) ∼ 7.2 g cm−2

(
R

10 GV

)−0.3

• If interpreted as residence time:

in disk: tres =
s

v
=

X

v ρ̄
=

X

v mN n̄gas

in halo: tres =
X

v mN n̄gas

zmax

h

• In a diffusion model with diffusion coefficient κ,

tres ∼
z2

max

κ

→ faster diffusion at higher energies: κ = κ(p) ∼ p1/3

halo height

disk height
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What are the sources of (galactic) CRs?

• Already Baade & Zwicky suggested supernovae (SNe)

• SN liberates much of gravitational energy of star, typically 1051 erg

• (1 erg = 10−7 J ' 624 GeV)

• However, particles accelerated in SN event suffer from adiabatic losses
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Example: Tycho SNR
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Example: Tycho SNR
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Example: Tycho SNR

Also sources of hadronic cosmic rays?
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The case for supernova remnants
Ginzburg & Syrovatskii

1 Presence of strong shocks

2 Observation of PeV particles

3 Energetics:

CR energy density: ε = 0.3 eV cm−3 ' 5× 10−13 erg cm−3

Volume of CR halo: V = π(10 kpc)2(3 kpc) ' 3× 1067 cm3

Total CR energy: εV = 1055 erg

Residence time: tres = 107 yr
Power needed: εV /tres = 1048 erg yr−1

Galactic supernova rate: R = 0.03 yr−1

Contribution from one supernova: εV /(Rtres) = 3× 1049 erg
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“What is accelerating to Eknee ∼ 3 × 1015 eV ?”

Supernova remnants

• Emax . 1013...14 eV for B ∼ BISM

Lagage & Cesarsky (1983)

• Amplify magnetic fields, non-resonant instability
Bell (2004)

• Saturation?

→ Particle-in-cell simulations

Other sources

• Superbubbles

• Supernovae before shock breakout

• Colliding wind binaries

• Pulsar wind nebulae

• The Fermi bubbles

• The Galactic centre

• Massive star clusters
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Any questions?
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