Why neutrino masses are so small?

 $m_t = 174.3 \pm 5.1 \text{ GeV}$ $m_b = (4.0-4.5) \text{ GeV}$ $m_\tau = 1776.99 \pm 0.29 \text{ MeV}$

neutrinos: $50 \text{meV} < \text{m}_3 < 1 \text{eV}$

Mass generation in SM:

Charged (and Z⁰) particles aquire mass via coupling to Higgs boson

Is this true for neutrinos?

The different order of magnitude of their masses might hint to other nature of mass generation

Majorana Particles

Because neutrinos carry no electric charge (and no color charge), there is the possibility: particle ≡ anti-particle

Majorana particle

particle ψ anti-particle (charge conjugate field): for a Majorana particle: $\psi_M^c = \pm \psi_M$

$$\psi^c = C \overline{\psi}^T$$

But what about experiments?

Neutrinos (solar):

Anti-neutrinos(reactor):

 $v_{eL}^{37} \text{Cl} \rightarrow {}^{37} \text{Ar} + e^{-}$ observed! $v_{eR}^{37} \text{Cl} \rightarrow {}^{37} \text{Ar} + e^{-}$ not observed!

There are two different states per flavor but the difference could be due to left-handed and right-handed states!

Very mysterious biographie, see for example: Antonino Zichichi: <u>Ettore Majorana: genius and mystery.</u> Cern Courier, 24. Juli 2006 (englisch)

Nature of Neutrino Mass

Neutrino fields v(x) with mass m are described by the Dirac equation:

$$(i\gamma^{\alpha}\partial_{\alpha} - m)v(x) = 0$$

4 component spinor

The left-handed and right-handed components are:

This leads to a system of two coupled equations:

$$i\gamma^{\alpha}\partial_{\alpha}v_{L} - mv_{R} = 0 \qquad i\gamma^{\alpha}\partial_{\alpha}v_{R} - mv_{L} = 0$$

With m=0 one obtains the decoupled Weyl equations:

$$i\gamma^{\alpha}\partial_{\alpha}v_{L,R} = 0$$

From Goldhaber experiment one knows that v_L is realized. With m=0 there is no need to have v_R . Therefore, there were no v_R in the Standard Model.

Dirac Mass Term

The neutrino mass term in L could have exactly the same form as the mass term of the quarks and charged leptons:

Must add v_{R} (right handed SU(2) singlets) to standard model!

Problem: When the mechanism is the same, why are the masses so small? Or: why should couplings to Higgs be so different?

Footnote: A Lorentz invariant mass term must link a chirally left-handed field with a chirally right handed field

Majorana Mass Term

<u>Footnote</u>: A Lorentz invariant mass term must link a chirally left-handed field with a chirally right handed field

$$L_{M_L} = -\frac{m_L}{2} \left(\overline{(v_L)^c} v_L + \overline{v_L} (v_L)^c \right)$$
$$L_{M_R} = -\frac{m_R}{2} \left(\overline{(v_R)^c} v_R + \overline{v_R} (v_R)^c \right)$$

Construct the Majorana fields:

$$\phi_{1} = v_{L} + (v_{L})^{c} \qquad \phi_{2} = v_{R} + (v_{R})^{c}$$
$$\phi_{1,2} = (\phi_{1,2})^{c}$$

$$-2L_{M_L} = m_L \overline{\phi}_1 \phi_1$$
$$-2L_{M_R} = m_R \overline{\phi}_2 \phi_2$$

Eigenstates of the interaction: v_L and v_R Mass eigenstates: Φ_1 (mass m_L), Φ_2 (mass m_R)

Most general case: Dirac-Majorana Mass Term

mass term for each flavor:

$$-2L_{DM} = \left(\overline{v_L}, \overline{(v_R)^c}\right) \cdot \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \cdot \begin{pmatrix} (v_L)^c \\ v_R \end{pmatrix} + \text{h.c.}$$
mass matrix M

In order to obtain the mass eigenstates one must diagonalize M:

find unitary U with
$$\tilde{M} = U^+ M U = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix}$$

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \text{ with } \tan 2\theta = \frac{2m_D}{m_R - m_L}$$

with the mass eigenstates:

 $\begin{pmatrix} v_{1L} \\ v_{2L} \end{pmatrix} = U^+ \begin{pmatrix} v_L \\ (v_-)^c \end{pmatrix}$

and mass eigenvalues:

$$m_{1,2} = \frac{1}{2} \left[(m_R + m_L) \pm \sqrt{(m_L - m_R)^2 + 4m_D^2} \right]$$

What if...

 $\theta = 45, m_1 = m_2 = m_D$. 2 degenerate Majorana states can be combined to form 1 Dirac state. 2. $\underline{m}_{D} = 0$: pure Majorana case $\theta = 0, m_1 = m_1 m_2 = m_R$ 3. $\underline{m}_{\underline{R}} \gg \underline{m}_{\underline{D}}, \underline{m}_{\underline{L}} = \underline{0}$: seesaw model m_{R} $\theta = m_D/m_R \ll 1$ $m_1 = \frac{m_D^2}{m_1}, \qquad m_2 \approx m_R$ \mathcal{M}_{R} per neutrino flavor: one very light Majorana neutrino $v_{1L} = v_L$ one very heavy Majorana neutrino $v_{2L} = (v_R)^c$

pure Dirac case

1. $\underline{m}_{\underline{l}} = \underline{m}_{\underline{R}} = 0$:

 m_D of the order of lepton masses, m_R reflects scale of new physics \Rightarrow explains small neutrino masses!

· MR could be ~ keV =) candidate for warm dark matter

Which isotopes can do ββ-decays?

Neutrinoless Double Beta Decay 0vββ decay

Neutrinoless Double Beta Decay: Rate and Neutrino mass

Effective neutrino mass in 0vββ-decay:

$$\left\langle m \right\rangle_{\beta\beta} \equiv \left| \sum_{i=1}^{3} m_{i} U_{ei}^{2} \right|$$

Compare to β-decay:		
$\left\langle m^2 \right\rangle_{\beta} = \sum_i m_i^2 \left U_{ei} \right ^2$		

Double Beta Decay Candidates:

Decay candidate	Q value (MeV)	natural abundance (%
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
$^{110}\text{Pd} \rightarrow ^{110}\text{Cd}$	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
$^{124}Sn \rightarrow ^{124}Te$	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6

Meanwhile measured: 2v Double Beta Decay

Isotope	$T_{1/2}(2\nu),{\rm yr}$
^{48}Ca	$4.4^{+0.6}_{-0.5}\cdot10^{19}$
76 Ge	$(1.5\pm 0.1)\cdot 10^{21}$
82 Se	$(0.92\pm 0.07)\cdot 10^{20}$
$^{96}\mathrm{Zr}$	$(2.3\pm 0.2)\cdot 10^{19}$
$^{100}\mathrm{Mo}$	$(7.1\pm 0.4)\cdot 10^{18}$
${}^{100}\mathrm{Mo}\text{-}{}^{100}\mathrm{Ru}(0^+_1)$	$5.9^{+0.8}_{-0.6}\cdot10^{20}$
$^{116}\mathrm{Cd}$	$(2.8\pm 0.2)\cdot 10^{19}$
$^{128}\mathrm{Te}$	$(1.9\pm 0.4)\cdot 10^{24}$
$^{130}\mathrm{Te}$	$(6.8^{+1.2}_{-1.1}) \cdot 10^{20}$
$^{150}\mathrm{Nd}$	$(8.2\pm 0.9)\cdot 10^{18}$
$^{150}\mathrm{Nd}\text{-}^{150}\mathrm{Sm}(0^+_1)$	$1.33^{+0.45}_{-0.26}\cdot 10^{20}$
$^{238}\mathrm{U}$	$(2.0\pm 0.6)\cdot 10^{21}$
$^{130}Ba; ECEC(2\nu)$	$(2.2\pm 0.5)\cdot 10^{21}$

from A.S.Barabash arXiv:1003.1005

GERDA at LNGS

Ge Detectors of GERDA (enriched in ⁷⁶Ge)

Water Tank for GERDA Muon Veto

Fighting the background

 $\beta\beta$ decay signal: single energy deposition in a 1 mm³ volume

Pulse shape discrimination (PSD) for multi-site and surface α events

Ge detector anti-coincidence

LAr veto based on Ar scintillation light read by fibers and PMT

Muon veto based on Cherenkov light and plastic scintillator

GERDA Phase II final results on 0vββ-decay

PHYSICAL REVIEW LETTERS 125, 252502 (2020)

FIG. 1. Energy distribution of GERDA Phase II events between 1.0 and 5.3 MeV before and after analysis cuts; the exposure is 103.7 kg yr. The expected distribution of $2\nu\beta\beta$ decay events is shown assuming the half-life measured by GERDA [31]. The prominent γ lines and the α population around 5.2 MeV are also labeled.

127.2 kg yr of total exposure background index of 5.2×10^{-4} counts/(keV kg yr) $T_{1/2} > 1.8 \times 10^{26}$ yr at 90% C.L. $m_{\beta\beta} < 79$ –180 meV

KAMLAND - ZEN

KamLAND-Zen 800: 745kg enriched Xe (90% ¹³⁶Xe) started 2019

KamLAND-Zen: recent results exposure of 970 kg yr of ^{136}Xe

arXiv:2203.02139v2: "Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen"

Status of 0vββ experiments: Kamland-Zen(Xe), Gerda(Ge), Cuore(Te)

Thank you!