

The History of SN1885A in M31

01 August 2022, Marie Prucker

Contents

- 1. Introduction SAndromedae
- 2. Type-la Supernovae
- 3. Evolution of Supernova Remnants
- 4. Observations and Classification of SN1885A
- 5. The Remnant of SN1885A
- 6. Search for X-Ray Emission from SN1885A
- 7. Summary

1. Introduction - SAndromedae

- SAndromedae/ SN1885A: historical supernova (SN) in the central region of M31
- first and brightest extragalactic SN ever observed
- referred to as "most fascinating event of modern astronomy"

Why is the detection of (X-ray) emission from the remnant of SN1885A of interest?

- information about the properties of SNRs at this early stage
- information about type I SNe in general

2. Type-Ia/Thermonuclear Supernovae

- accreting White Dwarf (WD) in binary system
- WD reaches Chandrasekhar limit (1.44 M_{\odot})
- → gravitational force > electron degeneracy pressure
- temperature rises
- \rightarrow triggers nuclear fusion reactions
- \rightarrow eventually: disruption of the star
- no Hydrogen lines in spectra

Seward and Charles (2010)

3. Evolution of Supernova Remnants

1. Ejecta-Dominated Phase

- shell of ejecta from explosion sweeps up surrounding ISM
- two shockwaves are created:
 - → blast-wave/forward shock
 - \rightarrow reverse shock
- ejecta expand freely until hit by reverse shock
- $M_{ej} > M_{ISM}$
 - → evolution dominated by ejecta
- X-ray emission expected to decrease

2. Sedov-Taylor Phase

- forward shock moves further into ISM
- reverse shock moves inward
 → reaches center
- $M_{ISM} > M_{ej}$
- energy transferred from ejecta to ambient gas
- shell of ejecta expands adiabatically
 - → evolution no longer dominated by ejecta
- X-ray emission expected to increase

Friedrich-Alexander-Universität Erlangen-Nürnberg

Discovery: 20 August 1885 by Ernst Hartwig at Dorpat

maximum visual magnitude: 5.7 mag around 18/19 August 1885

Observatory in Estonia

of SN1885A

absolute magnitude at maximum: -18.5 mag

last sighting: 7 February 1886

4. Observations and Classification

- **Classification:** type la
- Unusually fast light curve, • sub-luminous, unusually red at maximum

September

Jones (1976)

1885

August

October

5. The Remnant of SN1885A

Discovery of SNR1885:

 Fesen et al. in 1988 in Fe I absorption images with refractor at Kitt Peak National Observatory, AZ

Observations with HST:

- absorption largely due to Ca II, also Ca I and Fe I
- unshocked, freely expanding ejecta
- diameter of absorption spot:

 0.70 ± 0.05 arcsec

• expansion velocity:

 $11,000 \pm 2,000 \text{ km s}^{-1}$

Radio Emission

observations with Very Large Array (Dickel and Dodorico, 1984)
 → upper limit on radio luminosity:

 1×10^{23} erg s⁻¹ Hz⁻¹ at wavelength of 6.1 cm

 \rightarrow 0.4 times the luminosity of Tycho, 1.3 times that of Kepler

X-Ray Emission

- no X-ray emission detected so far
- X-ray source within 1.3 arcsec detected by Kareet (2002)
 → believed to be X-ray counterpart to optical nova

6. Search for X-Ray Emission from SNR1885

Declination

Goal: create merged images of the central region of M31 to investigate potential X-ray emission from SNR1885

- Chandra HRC-I data from 45 different observations of M31 between 2001 and 2012
- Position of SAnd:
 R. A. 00^h42^m43^s. 12368
 decl. +41°16′03″. 2124

\rightarrow SNR1885 not visible in images

Right ascension

Upper Limit on X-Ray Luminosity of SNR1885

Declination

- define source and background regions
- APEC model for kT = 1 keV
- Galactic $n_H = 7 \times 10^{20} \text{ cm}^{-2}$ Intrinsic $n_H = 1 \times 10^{21} \text{ cm}^{-2}$
- Distance to M31: 780 kpc
- → upper limit on the X-ray luminosity (0.1 – 10 keV band)

 $1.36 \times 10^{34} \text{erg s}^{-1}$

Comparison to other SNRs

→ Upper limit low compared to Galactic SNRs/ X-ray SNe

\rightarrow Possible reasons:

freely expanding ejecta, absorption, low density ISM

- SAndromedae/SN1885A: historical SN in central region of M31
- **Discovery:** 20 August 1885 by Ernst Hartwig
- SN1885A generally classified as type la
- SNR1885 discovered in 1988 in the optical
- so far, no X-ray emission from SNR1885
- obtained upper limit on X-Ray luminosity of SAnd at least two orders of magnitude lower compared to younger Galactic remnants
- X-ray emission expected to rise with further evolution of the remnant

\rightarrow observations in the distant future necessary

Thank you for your attention!

X-Ray Emission from Supernovae

- Thermal X-ray emission from a SNR:
- $L_X = \Lambda n_e^2 V$
- Chevalier (1982): Self similar solution for uniform expansion of gas into stationary surrounding medium
- Assumption: power-law density profiles for ISM and ejecta

$$ho_{ej} \propto \left(rac{r}{t}
ight)^{-n} t^{-3}
ho_{ISM} \propto r^{-s}$$

 \rightarrow solution holds for n > 5, s < 3

 \rightarrow typically 9 < n < 11

