

ELAN & N

Florian Eppel

on behalf of the TELAMON Team

Effelsberg Monitoring of AGN Jets with Very-High-Energy Astroparticle Emission

TELAMON-Team

M. Kadler, U. Bach, P. Benke, D. Berge, S. Buson, D. Dorner, P.G. Edwards, F. Eppel, M. Giroletti, A. Gokus, O. Hervet, J. Heßdörfer, S. Koyama, A. Kraus, T.P. Krichbaum, E. Lindfors, K. Mannheim, R. de Menezes, R. Ohja, G. F. Paraschos, E. Pueschel, F. Rösch, E. Ros, B. Schleicher, J. Sinapius, J. Sitarek, J. Wilms, M. Zacharias

Effelsberg Monitoring of AGN Jets with VHE Astroparticle Emission

TeV-Blazars

- AGN with Jets pointed directly towards Earth
- Highly variable broadband emission from radio to γ
- Typical double-humped spectrum
- Classified according to Synchroton Peak Frequency
 -> HBL and Extreme Blazars (synchr. peak > 10¹⁵ Hz)

Figure 1: Artist's Impression of an Active Galactic Nucleus/AGN (Credit: ESA/NASA)

Figure 2: Blazar Sequence, Fosatti et al. 1998

Effelsberg Monitoring of AGN Jets with VHE Astroparticle Emission

Radio- γ Connection

- Known correlation of TeV and radio emission (e.g., Giroletti et al. 2016)
- Possible sources of UHE cosmic rays and neutrinos (PKS 1424-418, TXS 0506+056, PKS 1502+106)
- Blazar VLBI Flux-Neutrino Associations found (Plavin et al. 2020 & 2021, Hovatta et al. 2020, Kadler et al. 2016)

BUT: still no 3σ neutrino association!

Goals

- Investigate the radio- γ correlation (especially with upcoming CTA)
- Pin down neutrino sources by radio flaring activity (follow up of ANTARES, IceCube, KM3NeT, ...)
- Tracing dynamical processes in pc-scale jets related to flares or ν -detections.
- Characterize variability to test different emission models

-> Use single-dish monitoring with Effelsberg 100-m Telescope -> TELAMON!

Figure 3: Radio Images of PKS 1424-418 before and after a possibly coincident (2σ) Neutrino Event (Kadler et al. 2016)

About

Effelsberg 100-m Telescope

- Located in Effelsberg, Germany
- Operated by Max-Planck-Institute for Radio Astronomy in Bonn
- One of the largest fully steerable radio telescopes in the world
- Superior sensitivity compared to smaller dishes

TELAMON

- Tev Effelsberg Long-term Agn MONitoring
- Est. Aug 2020
- Monitoring radio spectra of TeV-Blazars and candidate neutrino-assoc. AGN
- High cadence observations at high radio frequencies
 - every 2-4 weeks
 - From 14 GHz up to 44 GHz

Figure 4: Effelsberg 100-m Telescope

Observational Setup

- 20mm, 14mm and 7mm receiver (secondary focus)
 -> simultaneous data at 14,16,19, 21, 23, 25, 36, 39, 41, 44 GHz
- Cross-Scans with typically 8 subscans at 20 mm and 14 mm and 16 subscans at 7 mm

Figure 7: Example cross-scan of a point-like source

Figure 6: Ettelsberg Secondary Focus Receivers (adapted from Effelsberg Wiki)

Effelsberg Monitoring of AGN Jets with VHE Astroparticle Emission

Sample

- Unique sample of TeV-detected and neutrino-candidate AGN
- Main focus on HBL and Extreme BL
- Complete sample for HBLs (down to 10-20 mJy)
- Newly detected sources dynamically added

Table 1: List of all TELAMON sources

J200	Alternative	$Class^{a}$	$S_{14mm}^{\rm b}$	Redshift	_	J2000	Alternative	$Class^{a}$	S_1^{b}	Redshift
Name	Name		[mJy]			Name	Name		[mJy]	
0035+5950	1ES 0033+595	HBL	75	0.086	_	1217+3007	ON 325	HBL	450	0.131
0112+2244	S20109+22	IBL	1100	-		1221 + 2813	W Comae	IBL	475	0.102
0214+5144	TXS 0210+515	HBL	150	0.049		1221 + 3010	1ES 1218+304	HBL*	68	0.184
0221+3556	S30218+35	FSRQ	500	0.68466		1230 + 2518	ON 246	IBL	400	0.135
0222+4302	3C 66A	HBL	1000	0.34		1422 + 3223	OQ 334	FSRQ	775	0.681
0232+2017	1ES 0229+200	HBL*	40	0.1396		1427+2348	OQ 240	HBL	400	0.647
0303-2408	PKS 0301-243	HBL	200	0.2657		1428+4240	1ES 1426+428	HBL*	30	0.129
0316+4119	IC 310	RG/HBL	150	0.0189		1443 + 2501	PKS 1441+25	FSRQ	150	0.94
0416+0105	1ES 0414+09	HBL*	50	0.287		1518-2731	TXS 1515-273	HBL	225	0.1281
0507+6737	1ES 0502+675	HBL	50 ⁽¹⁾	0.341		1542 + 6129	GB6 J1542+6129	IBL	115	0.507
0509+0541	TXS 0506+056	IBL/HBL	1750	0.3365		1555 + 1111	PG 1553+113	HBL	300	0.49
0521+2121	RGB J0521+212	ÍBL	375	-		1653 + 3945	Mrk 501	HBL*	1000	0.034
0650+2502	1ES 0647+250	HBL	100	-		1728 + 5013	l Zw 187	HBL*	125	0.055
0658+0637	NVSS J065844+063711	HBL	125	-		1743 + 1935	1ES1741+196	HBL*	175	0.084
0811 ± 0237	1RXS 1081201 8+023735	HBI *	50 ⁽¹⁾	0 1721		1813 + 3144	B21811+31	FSRQ	100	0.117
0013-2103	MRC 0010_208	HBI*	135(1)	0 108017		1943+2118	HESS J1943+213	HBL*	$\sim 20^{(2)}$	-
0913-2103 0955 ± 3551	3HSP 1005507 0+355101	HBL*	10	0.190017		1958-3011	1RXS J195815.6-301119	HBL*	100 ⁽¹⁾	0.119329
1015 ± 4026	1FS 1011+496	HBI	225	0.212		1959 + 6508	1ES 1959+650	HBL*	225	0.048
1058 + 2817	GB6 1058+2817	HBI	100	0 4793		2018+3851	TXS 2016+386	HBL	400	_
1104 + 3812	Mrk 421	HBI *	375	0.031		2158-3013	PKS 2155-304	HBL	325	0.116
1136 + 7009	Mrk 180	HBL	175	0.045278		2243+2021	RGB J2243+203	HBL*	115 ⁽¹⁾	0.119329
1145+1936	3C 264	RG	325	0.021718		2347+5142	1ES 2344+514	HBL*	150	0.044

Effelsberg Monitoring of AGN Jets with VHE Astroparticle Emission

Example Source: S2 0109+22

- Continuous dynamic spectra and light curves
- Example: flaring activity with increase in flux density over ~100 days at 14mm and 7mm
- Sampling rate well suited to resolve changes
- Spectral gap at 30 GHz filled by coordinated ATCA observations

Figure 8: TELAMON light curve at 7 mm and 14 mm (left) and spectra (right) of the source S2 0109+22

Effelsberg Monitoring of AGN Jets with VHE Astroparticle Emission

Collaboration with MWL Partners

- Sample includes many targets of TeV-telescopes (e.g., MAGIC, VERITAS, ...)
- Coordination with AGN groups of Fermi-LAT, FACT, H.E.S.S., MAGIC and VERITAS

Effelsberg Monitoring of AGN Jets with VHE Astroparticle Emission

Scientific Output

Pilot Phase:

- Two ATels
- 4 Contributions @ ICRC 2021
- 1 Bachelor Thesis just started (D.

Radio Flaring of the

ATel #14822; F. Eppel, M. Kadler, A. G

- 1 Bachelor Thesis finished (J. Her
- 2 Master Thesis in work (F. Eppe • Heßdörfer)

2021 arted (D. Kirchner) d (J. Heßdörfer) (F. Eppel, J.	Bisson Carlos Carlo
ATel #14822 Flaring of the Quasar B2 1420+32 M. Kadler, A. Gokus, J. HeÄdä¶rfer, F. Rå¶sch, J. Sinapius on 1 Aug 2021; 12:25 UT	<image/> <image/> <image/> <image/> <image/> <section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>

PROCEEDINGS

P₂S

ATel #14191 Contemporary Effelsberg Observations of Two Radio Sources in the Fields of IceCube-201114A and Ice

Effelsberg Monitoring of AGN Jets with VHE Astroparticle Emission

Outlook

- Effelsberg Key Science Project to extend the program in the long term
- ✓ Coordination with next gen TeV & Neutrino telescopes (CTA, KM3NeT, ...)
- Statistical database to test the significance of radio flaring activity with neutrino emission in Blazars
- ✓ Extract polarization data
- Coordination with VLBI monitoring observations of TeV and neutrino-candidate Blazars (TANAMI, MOJAVE)
- ✓ Multiwavelength studies with partners Fermi-LAT, FACT, H.E.S.S., MAGIC and VERITAS

Effelsberg Monitoring of AGN Jets with VHE Astroparticle Emission

Thanks for your attention!

Figure 11: Florian Eppel, thirsty & hungry

Effelsberg Monitoring of AGN Jets with VHE Astroparticle Emission

(12

Selection Criteria

- Excluding low peak blazars
 -> already well covered
- Sources whose low-state flux density < 500 mJy
- Complete sample for HBLs (down to 10-20 mJy)
- Other sources for comparison
- Newly detected sources dynamically added

Table 1: List of all TELAMON sources

J200	Alternative	$Class^{\mathrm{a}}$	S_{14mm}^{b}	Redshift	J2000	Alternative	$Class^{\mathrm{a}}$	S_{14mm}^{b}	Redshift
Name	Name		[mJy]		Name	Name		[mJy]	
0035+5950	1ES 0033+595	HBL	75	0.086	1217 + 3007	ON 325	HBL	450	0.131
0112+2244	S20109+22	IBL	1100	-	1221 + 2813	W Comae	IBL	475	0.102
0214+5144	TXS 0210+515	HBL	150	0.049	1221 + 3010	1ES 1218+304	HBL*	68	0.184
0221+3556	S3 0218+35	FSRQ	500	0.68466	1230 + 2518	ON 246	IBL	400	0.135
0222+4302	3C 66A	HBL	1000	0.34	1422 + 3223	OQ 334	FSRQ	775	0.681
0232+2017	1ES 0229+200	HBL*	40	0.1396	1427 + 2348	OQ 240	HBL	400	0.647
0303-2408	PKS 0301-243	HBL	200	0.2657	1428 + 4240	1ES 1426+428	HBL*	30	0.129
0316+4119	IC 310	RG/HBL	150	0.0189	1443 + 2501	PKS 1441+25	FSRQ	150	0.94
0416 + 0105	1ES 0414+09	HBL*	50	0.287	1518-2731	TXS 1515-273	HBL	225	0.1281
0507+6737	1ES 0502+675	HBL	50 ⁽¹⁾	0.341	1542 + 6129	GB6 J1542+6129	IBL	115	0.507
0509+0541	TXS 0506+056	IBL/HBL	1750	0.3365	1555 + 1111	PG 1553+113	HBL	300	0.49
0521+2121	RGB J0521+212	ÍBL	375	_	1653 + 3945	Mrk 501	HBL*	1000	0.034
0650+2502	1ES 0647+250	HBL	100	_	1728 + 5013	l Zw 187	HBL*	125	0.055
0658+0637	NVSS J065844+063711	HBL	125	-	1743 + 1935	1ES 1741+196	HBL*	175	0.084
0811+0237	1RXS_J081201.8+023735	HBL*	50 ⁽¹⁾	0.1721	1813+3144	B21811+31	FSRQ	100	0.117
0013-2103	MRC 0910-208	HBI *	135(1)	0 198017	1943 + 2118	HESS J1943+213	HBL*	$\sim 20^{(2)}$	-
0955 + 3551	3HSP 1095507 9+355101	HBI *	10	0.557	1958-3011	1RXS J195815.6-301119	HBL*	100 ⁽¹⁾	0.119329
1015 + 4926	1FS 1011+496	HBI	225	0.212	1959 + 6508	1ES 1959+650	HBL*	225	0.048
1058 + 2817	GB6 11058+2817	HBI	100	0 4793	2018 + 3851	TXS 2016+386	HBL	400	-
1104 + 3812	Mrk 421	HBL*	375	0.031	2158-3013	PKS 2155-304	HBL	325	0.116
1136 + 7009	Mrk 180	HBL	175	0.045278	2243 + 2021	RGB J2243+203	HBL*	115 ⁽¹⁾	0.119329
1145 + 1936	3C 264	RG	325	0.021718	2347+5142	1ES 2344+514	HBL*	150	0.044

Effelsberg Monitoring of AGN Jets with VHE Astroparticle Emission

ASTRO WÜRZBURG

Neutrino Candidate Follow-up

- Target list dynamically updated with new ν -detections
- Example 1: NVSS J065844+063711 three days after IC 201114A event
- Often uncertainty region of Neutrino alert too large
 - Radio data can yield independent information to judge possible associations
 - TXS 2016+386: radio flaring after neutrino detection IC 201120A

Figure 12: TELAMON light curve of TXS 2016+386 (left) and spectrum of NVSS J065844+063711 (right)

Effelsberg Monitoring of AGN Jets with VHE Astroparticle Emission

Subband Averaging

- Logarithmic spectral fit for each receiver
- Average flux density from fit
- Min/Max flux density from min/max fits

Figure 13: Example of the sub-band averaging process (TXS 0506+056 on Jan 2, 2021 at 14 mm). The average flux density is calculated by taking the integral of the best fit between 19 GHz and 25 GHz. The errors are determined by integrating the Min/Max fits

Effelsberg Monitoring of AGN Jets with VHE Astroparticle Emission