

## **Astronomy and Astrophysics**

Manami Sasaki Dr. Karl Remeis Sternwarte, Bamberg







## **Stellar Astronomy**

- Hot subdwarfs
- Stellar atmospheres
- Hyper-velocity stars









erosita





- Accreting neutron stars and black holes in binaries
- Active galactic nuclei

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

- Atomic physics
- ISM absorption
- Future X-ray missions











- Accreting neutron stars and black holes in binaries
- Active galactic nuclei

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

- Atomic physics
- ISM absorption
- Future X-ray missions























































Bubble Nebula (Milky Way) T.A. Rector/University of Alaska Anchorage, H. Schweiker/WIYN and NOAO/AURA/NSF

DEM L50 (LMC) X-ray: NASA/CXC/Univ of Michigan/A.E.Jaskot, Optical: NOAO/CTIO/MCELS

SGS LMC 2 X-ray: XMM-Newton, Optical: MCELS

Tycho's SNR



SNR Cas A

ESA

NASA/CXC

eRO-STEP





## "extended ROentgen Survey with an Imaging Telescope Array"

Collaboration between Germany and Russia.

German X-ray telescope on board the Russian "Spectrum-Roentgen-Gamma" (SRG) satellite.

First all-sky survey in the soft to medium X-ray band from 0.2 to 10 keV with a spatial resolution of 26" and spectral resolution of 80 eV at 1.5 keV.



Credit: MPE



PROSITA





## **Spektr-Roentgen Gamma**

# 

## Launch: July 13, 2019, 14:31 CEST



EΡ















eROSITA All-Sky Survey





J. Sanders, H. Brunner (MPE), E. Churazov, M. Gilfanov (IKI), and eSASS team







## eROSITA bubbles



J. Sanders, H. Brunner (MPE), E. Churazov, M. Gilfanov (IKI), and eSASS team



**eROSITA** 





#### eROSITA All-Sky Survey 1

0.6 - 1 keV without point sources



Predehl et al. (2020)











## Fermi bubbles vs. eROSITA bubbles



Predehl et al. (2020)





#### Fermi and eROSITA bubbles ERLANGEN CENTRE FOR ASTROPARTICLE

- Mean surface brightness of eROSITA bubbles =  $(2 - 4) \times 10^{-15}$  erg cm<sup>-2</sup> s<sup>-1</sup> arcmin<sup>-2</sup>.
- Thermal plasma with kT = 0.3 keV for 0.2 x solar abundances.
- $L_{X,tot} \sim 10^{39}$  erg/s at a distance of 10.6 kpc.
- Age ~ 20 Myr.
- Shock velocity v<sub>s</sub> ~340 km/s. ٠
- Gas cooling time  $t_{cool} \sim 2 \times 10^8$  years ٠ (>> age of bubbles).





eROSITA



# Fermi and eROSITA bubbles

- Mean surface brightness of eROSITA bubbles = (2 - 4) × 10<sup>-15</sup> erg cm<sup>-2</sup> s<sup>-1</sup> arcmin<sup>-2</sup>.
- Thermal plasma with kT = 0.3 keV for 0.2 x solar abundances.
- L<sub>X,tot</sub> ~ 10<sup>39</sup> erg/s at a distance of 10.6 kpc.
- Age ~ 20 Myr.
- Shock velocity v<sub>s</sub> ~340 km/s.
- Gas cooling time t<sub>cool</sub> ~ 2 x 10<sup>8</sup> years (>> age of bubbles).
- Sofue & Kataoka (2021):
  - At the outer shock front:  $v_s = 1000$  km/s.  $t_{cool} = 1.5$  Gyr.
  - 3 kpc crater in the disk at the base of the bubbles (HI, CO).





PROSIT









#### The eROSITA View of Stellar Endpoints

- Research unit funded by the German Research Foundation (DFG).
- Coordinated research at the core institues of the German eROSITA consortium:









Leibniz-Institut für Astrophysik Potsdam

PROSIT

 Study the graveyard of stellar evolution in our Milky Way and the Magellanic System using eROSITA: local ISM, supernova remnants, accreting compact objects.

