Event Reconstruction for SWGO

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Franziska, Leitl Erlangen, 14.10.21

Contents

- The Southern Wide-field Gamma-ray Observatory (SWGO)
- Reconstruction Method
- Core and Energy Estimations
- Outlook

The Southern Wide-field Gamma-ray Observatory (SWGO)

The Southern Wide-field Gamma-ray Observatory

- Future particle detector array
- In South America
- Latitude: between 10° and 30° South
- Altitude ≥ 4.4 km

The Southern Wide-field Gamma-ray Observatory

- Energy range: hundreds of GeV to hundreds of TeV
- Ground-level particle detection
- Water Cherenkov detector units

Incoming gamma ray

The Southern Wide-field Gamma-ray Observatory

- Field-of-view: 90° (\pm 45° zenith)
- Close to 100% duty cycle
- First of its kind in the Southern Hemisphere

Incoming gamma ray

https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html

Reference Detection Units

- Double-layered Water Cherenkov Detectors with cylindrical tanks
- One PMT in each cell

Characteristics	Upper Cell	Lower Cell
Radius [m]	1.91	1.91
Height [m]	2.5	0.5
Thickness [mm]	6.0	6.0
Cover lining	polypropylene	tyvek
Bottom lining	polypropylene	tyvek
Wall lining	tyvek	tyvek

Reference Array Layout

- Dense inner array: $r_{inner} = 160 \text{ m}$
- Sparse outer array: $r_{outer} = 300 \text{ m}$
- Observation height: 4700 m

Reconstruction Method

Template-based Reconstruction

Templates:

MC simulations of gamma-induced EAS binned in *E*, X_{max} , θ

Reconstruct incoming shower:Fit LDF of the shower to the templates

• Minimise log-likelihood

$$\log L = -2 \sum_{i} \log(F(\log_{10}(N_{PE})_{i}, r_{i}, X_{max}, E | \theta, \phi))$$

to get best fit parameters

 $y_{true} = 143.8 \text{ m}$

Example Event Reconstruction

- *E_{true}* = 10.7 TeV
- $X_{max,true} = 432 \text{ g/cm}^2$ $x_{true} = -104.3 \text{m}$
- *E_{reco}* = 10.6 TeV
- $X_{max,reco} = 436 \text{ g/cm}^2$ $x_{reco} = -102.7 \text{m}$ $y_{reco} = 144.4 \text{m}$

Binning:

$$E = 10.0 \text{ TeV} - 11.2 \text{ TeV};$$

 $\theta = 0^{\circ} - 19^{\circ}$
 $X_{max} = 400 \text{ g/cm}^2 - 450 \text{ g/cm}^2;$

Likelihood surface: minimum \rightarrow maximum

Core and Energy Estimations

Core Estimation

- Core resolution in the order of 1 TeV already below 10 m
- Better resolution at higher energies

Energy Estimation

 \rightarrow promising results when compared to HAWC and SWGO strawman for showers with 31.6 GeV < *E* < 100 TeV

Outlook: Direction Reconstruction

At HAWC: Shower front plane fit for the direction reconstruction

So far: No direction reconstruction for SWGO

 \rightarrow Look into template-based method similar to energy reconstruction

Thank you for your attention

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

References

- Schoorlemmer, H. (2019). A next-generation ground-based wide field-of-view gamma-ray observatory in the southern hemisphere. *Proceedings of Science*. ICRC2019. 785.
 DOI: <u>https://doi.org/10.22323/1.358.0785</u>
- [2] Joshi, V. et al. (2019). A Template-based γ-ray Reconstruction Method for Air Shower Arrays. arXiv e-prints. arXiv: <u>https://arxiv.org/abs/1809.07227</u>
- [3] Albert, A. et al. (2019). Science Case for a Wide Field-of-View Very-High-Energy Gamma-Ray Observatory in the Southern Hemisphere. *arXiv e-prints*. arXiv: <u>https://arxiv.org/abs/1902.08429</u>
- [4] Joshi, V. (2019). Reconstruction and Analysis of Highest Energy γ-Rays and its Application to Pulsar Wind Nebulae. DOI: <u>https://doi.org/10.11588/heidok.00026062</u>

Backup

Reconstruction Method

- Core guess: centre of mass of the shower
- Angle guess: shower plane fit using the centre of mass as core
- *E* guess: number of tanks hit as a proxy for energy
- X_{max} guess: relation between E and X_{max} derived from MC simulations

Simulations

Templates:

Parameters	Range	Bin Size	Description
Ε	31.6 GeV - 1PeV	0.05	binned in $\log_{10}(E/\text{GeV})$
X _{max}	150 g/cm ² - 750 g/cm ²	50 g/cm ²	-
θ	0° - 50°	0.06	binned in $\cos \theta$

Reconstruction:

- Showers thrown within 160 m radius from array centre
- Only used the upper cells for the reconstruction
- 31.6 GeV < *E* < 100 TeV
- θ < 45°

Core Resolution

Core resolution:

68% containment radius of the distribution of the distance between the reconstructed and true shower core

Energy Bias and Resolution

Energy bias: Energy resolution: mean of RMS of

 $(\log_{10}(E_{reco}/\text{GeV}) - \log_{10}(E_{true}/\text{GeV}))$ $(\log_{10}(E_{reco}/\text{GeV}) - \log_{10}(E_{true}/\text{GeV}))$