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EHT black hole image 

2019 ApJL 875  

Black hole in the center of M87 imaged at 1.3mm

Achieved by radio interferometry with ~10000 km baselines 

sensitive to features  
on angular scale 

  ∆ 𝜃~
𝜆
𝑏



Radio Optical

Can literally record entire waveform 
interfere later offline

One photon at a time!   
Need to bring paths to common point in real time 

Need path length delayed and 
stabilized to better than  𝜆

Max baselines ~ 100 m

mode population mode population

n̄ ≫ 1 n̄ ≪ 1



Two-photon techniques



• Correlation of counters are sensitive to sky photon phase    direction 
• Need to transfer the photon quantum state   can use quantum networks, this will 

allow long distances 

• Verified experimentally in quantum optics settings: M Brown et al, PRL 131, 210801 (2023)  

Second photon for quantum assist



Quantum Network
• Attenuation in fibers  need quantum repeater to reproduce qubits 

– Simple amplification will not conserve the quantum state 

• Qubit teleportation: produce entangled photons and send them to two 
locations  

• Bell State Measurement (BSM) on one photon will collapse the wave 
function of the other one (or swap entanglement, or teleport photon)

A.Zeilinger



Idea: use another star as source of coherent states for the interference 

Relative path phase difference δ1 − δ2 can be 
extracted from the coincidence rates of four single 
photon counters: c, d, g and f 

Perfect to start exploring this approach 

https://arxiv.org/abs/2010.09100

Rates HBT

New oscillatory term!

Full QFT calculation



source

detectors

source 1

source 2

detectors

Hanbury Brown – Twiss Interferometry
If points are close enough two options of photons paths are 
coherent = photon phases not so different and they interfere 

Interference produces photon bunching or HBT effect

Traditional HBT

Phase-sensitive HBT



Earth rotation fringe scan

example of oscillations 
for pair of stars

doi.org/10.1103/PhysRevD.107.023015



Related Ideas

arxiv.org/abs/2307.03221



Possible impact on astrophysics and 
cosmology

offers orders of magnitude better astrometry with major impact 

• Parallax: improved distance ladder  
• Proper star motions - sensitive to Dark Matter 

• Black hole accretion disk imaging  
• Gravitational waves through coherent motions of stars - 

microHz range 
• Exoplanets, microlensing etc

https://arxiv.org/abs/2010.09100
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Requirements for detectors

then achieve maximum contrast for HBT peaks, no resolution smearing 

• Fast imaging techniques are the key 
– Promising technologies: SPADs, SNSPDs 
– Target 10 - 100 ps resolution 

• Spectral binning: diffraction gratings, echelle spectrometers 

• High photon detection efficiency 

∆ 𝑡 ∗ ∆ 𝐸 ≥ ℏ /2

Need fast spectrometers  
at Heisenberg Uncertainty Principle limit 

(or Fourier limit, or Heisenberg-Gabor limit)

Photons must be indistinguishable so close enough in frequency 
and time to interfere  temporal & spectral binning :             
need ~ 10 pm * 10 ps 



Benchtop Verification

SPAD and SNSPD readout

arxiv.org/abs/2301.07042  
Optics Express 31, 44246-44258 (2023)



HBT and HOM Cancellation

HBT and HOM Cancellation



Phase dependence

Population of HBT peaks as function of phase = phase oscillations

arxiv.org/abs/2301.07042  
Optics Express 31, 44246-44258 (2023)



Next step: spectral binning



Spectral binning: spectrometer
Two beams of thermal photons  diffraction grating 
Based on intensified Tpx3Cam, ns time resolution

Ar spectrum
A.Nomerotski et al. Intensified Tpx3Cam, 
a fast  data-driven optical camera with 
nanosecond timing resolution for single 
photon detection in quantum applications, 
arxiv.org/abs/2210.13713, published in 
JINST



Next steps: spectrometer based on 
LinoSPAD2

Diffracted photon stripe projected on to linear array

Spectrometer time resolution: 5 ns 100 ps



Possible technologies: SPAD

• 512 x 1 pixels 
• 24 x 24 micron pixels 
• Max PDE (with microlenses) ~ 30% 
• 50 ps resolution 

Developed in EPFL (Switzerland) 
AQUA group (E.Charbon)

SPAD = single photon avalanche device 
Semiconductor device: p-n junction with amplification

LinoSPAD2

C. Bruschini et al, Linospad2: a 512x1 linear spad 
camera, in Quantum Sensing and Nano Electronics and 
Photonics XIX, vol. 12430, pp. 126–135, SPIE, 2023.



Spectrometer with LinoSPAD2
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Ar spectral lines

arxiv.org/abs/2304.11999 spectral resolution 0.04 nm

Achieved 0.04 nm spectral and 40 ps timing resolution 
only x10 more than  ∆ 𝑡 ∗ ∆ 𝐸 ≥ ℏ /2



Next talk



Important points for discussion

• For amplitude two-photon 
interferometry light needs be 

coupled to SMF 

• This is difficult!                            
5-10 micron spot, non-trivial 

adaptive optics 

• When achieved then interference 
and spectrometers are easy 

• Work in progress to adapt 
spectrometer to MMF 



Sensor R&D

Ideas for 2d imaging sensors which can provide 20 ps resolution 



Echelle spectrometer

• Widely used in astronomy 
• Achievable resolution ~ few pm 
• Require 2D single photon detector 

rsaa.anu.edu.au/observatories/instruments/echelle-spectrograph



Fast hybrid pixel detectors 

Lukas Tlustos and Erik H. M. Heijne, Performance and limitations of high 
granularity single photon processing X-ray imaging detectors, in CERN 
proceedings (2005)

Decouple readout chip and sensor 
• optimize technologies for chip and sensor separately 

Use different sensors with same readout, versatile approach for x-rays (Si, CZT) 
 we will use OPTICAL sensors

credit: IZM

Have roots in R&D for LEP/LHC vertex detectors 



Intensified fast camera: use off-the-shelf image intensifier

Image intensifier (Photonis PP0360EG)

Intensifier

Timepix3 ASIC: 
• 256 x 256 array, 55 x 55 micron pixel 

– 14 mm x 14 mm active area 
• 1.56 ns timing resolution 
• Data-driven readout, 600 e min threshold         

Optical Si sensor + Timepix3



X. Llopart by Medipix4 collaboration



First optical Tpx4 measurements

Single photon sensitive (intensified) optical Tpx4 camera 

600 ps possible with high gain intensifier 

arxiv.org/abs/2509.14649



Direct detection after MCP in Timepix

Has been implemented before with Timepix 
 Time resolution 60 ps (TBC) 

Limitation: photocathode QE ~ 35% 
Difficulties: HV and cooling in vacuum



Direct detection after MCP via resistive anode

Verena Leopold’s talk



20 ps timing in 2D 
• 20 ps timing is needed for next round of CERN experiments in 10 years, there will be lots of investment 

in fast ASICs 

• Hybrid SPAD detector 
  

• Timepix4 chip: 200 ps bin (RMS 60 ps) 

• FE not designed for large SPAD signals, good time resolution but large dead time 

• Tests with SPADs planned in 2026  

• PicoPix chip: 40 ps bin 
• Full size, will be used in one of CERN big experiments (LHCb) 

• Will have a SPAD compatible version 

• Hybrid detector: SPAD + PicoPix

ASIC

SPAD sensor

Difficulties: connectivity and cooling



20 ps timing in 2D 

Possible solution 
Alberto Gola - FBK 2.5D / 3D SiPM roadmap - ISSW 2024 

• 20 ps timing is needed for next round of CERN experiments in 10 years, there will be lots 
of investment in fast ASICs 

  
• Timepix4 chip: 200 ps bin (RMS 60 ps) 

• FE not designed for large SPAD signals, good time resolution but large dead time 
• Tests with SPADs planned in 2026  

• PicoPix chip: 40 ps bin 
• Full size, will be used in one of CERN big experiments (LHCb) 
• Will have a SPAD compatible version 

• Hybrid detector: SPAD + PicoPix



• SuperSPAD sensor 
• Developed in AQUA group in EPFL 
• Excellent results from QUASAR collaboration 
• 7.5 ps FWHM time resolution 

• QUASAR1 sensor (Ivan Cardea’s talk at this workshop)  
• Monolithic CMOS logic and TDCs (!) 
• Possible extension to full 2D version?

SPAD in CMOS: monolithic solution            
with 10 ps timing



Main points to take home
• Two-photon interferometry allows independent stations over long baselines 
• New ideas suggest quantum sensing technology can dramatically enhance 

astrometric precision, requires spectrometers and single photon cameras 
with 10 ps resolution 

• Promising results with 40 ps & 40 pm spectrometers 

Broad program in quantum-assisted optical interferometry ahead, efforts 
underway to develop new timing technologies (also needed for other 

applications) 

Synergy in techniques and instrumentation with SII community 
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Thank you for your attention!

https://capads.fjfi.cvut.cz
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