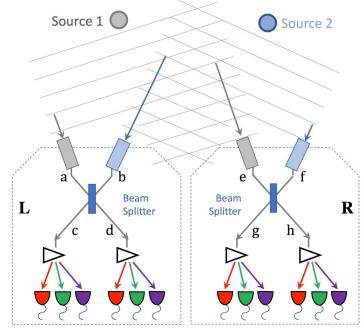
HBT in Your Garage

Aaron Mueninghoff

Stellar Intensity Interferometry Workshop 2025 Waischenfeld, Germany



Advisors: Paul Stankus (BNL) & Anze Slosar (BNL, SBU)

Our project

- Long term goal: Two-photon amplitude interferometry
- First need traditional intensity interferometry success
- Building SMF-fed spectrometer
 - Pi Imaging SPADλ
- Started collaboration with CHARA

Getting our feet wet

- Original plan: build our own telescopes
- How much can we learn from on-the-ground setup with an artificial star?
 - More than a pinhole and lens in our lab
- Longest building at BNL without radiation hazards

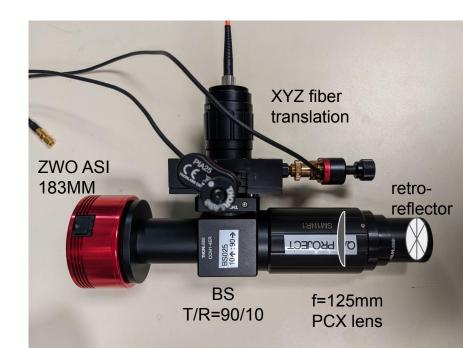
The artificial star(s)

- Source: red LED, filtered with
 Alluxa Hα ultranarrow filter (FWHM 0.1nm)
- Fibers emit through only a polarizer, no focusing optics
- Output from one or two 50µm fibers (single or binary stars)
- Located 70m or 80m from telescopes

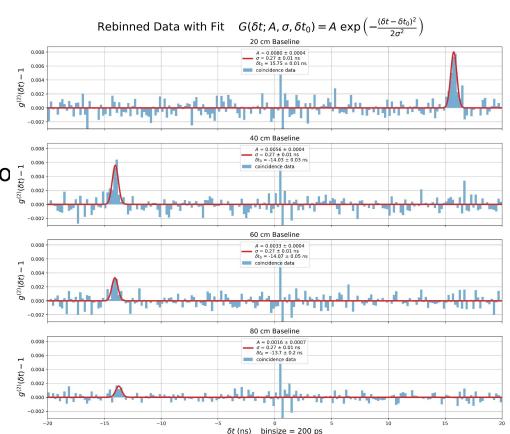
Horticulture LED

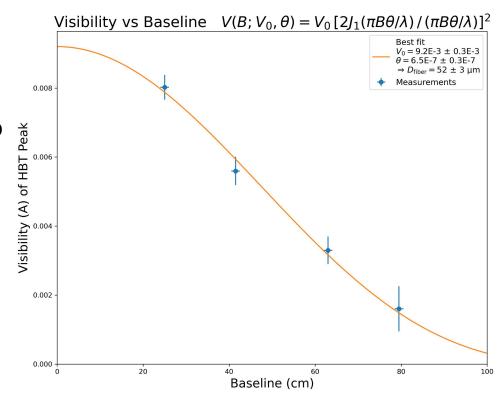
https://www.thorlabs.com /Images/GuideImages/75 10_YCable_7.jpg

The telescopes


- 4 inch SVBONY refractor telescopes
- Collect onto 50um step-index fibers
 - 2 and 5 meters long: ~15ns delay
- Thorlabs single spads and qutag
- Work during the night when the building is unoccupied
 - setup and tear down each time
- Measure baselines and star distance with measuring tape (consistent with laser range finder)

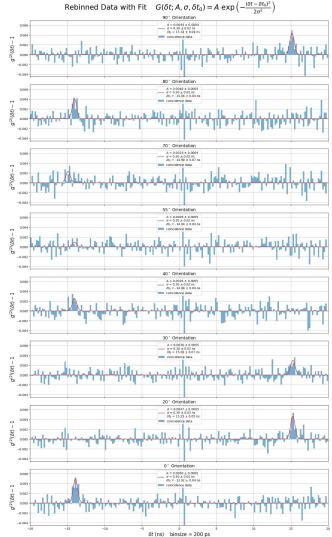
Fiber Injection


- Injecting into 50µm fibers that run to single-pixel ThorLabs SPADs
- Motorized XY translation of fiber
- See back-illuminated fiber in camera using lens and retroreflector


Single star

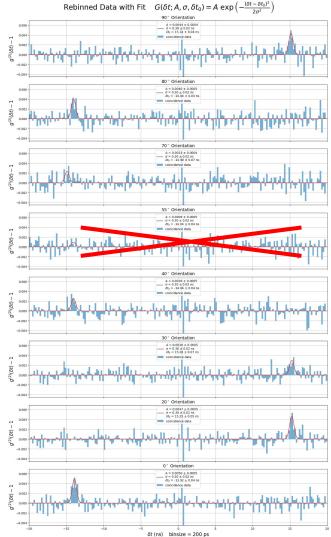
- 50µm at 79m = 0.13 arcsec
- Visibility vs baseline
- No pesky issues with weather or baseline changing over time due to earth's rotation
- Conservative measurement uncertainties
- Agree well with manufacturer (ThorLabs)on diameter, given distance

Single star

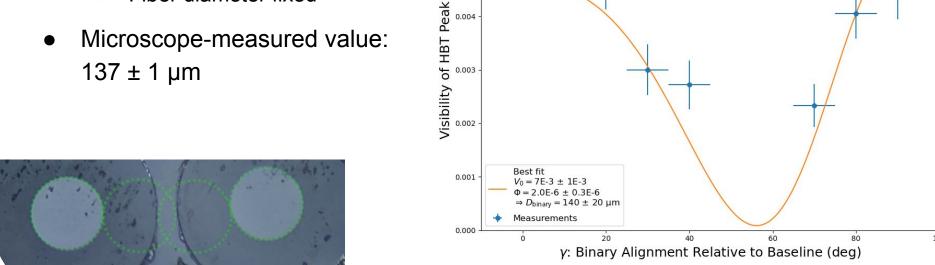

- 50µm at 79m = 0.13 arcsec
- Visibility vs baseline
- No pesky issues with weather or baseline changing over time due to earth's rotation
- Conservative measurement uncertainties
- Agree well with manufacturer (ThorLabs)on diameter, given distance

Binary star

- Bifurcated 50µm fiber at 69m
 - Two in one ferrule, separated by ~130μm
- "Close binary" but true uniform discs
- Fixed 30cm baseline: rotate fiber orientation and measure effect on visibility
- Clear noise floor
 - 55° orientation not usable

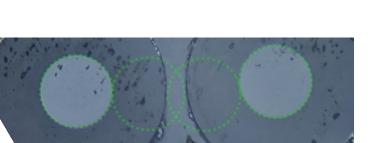


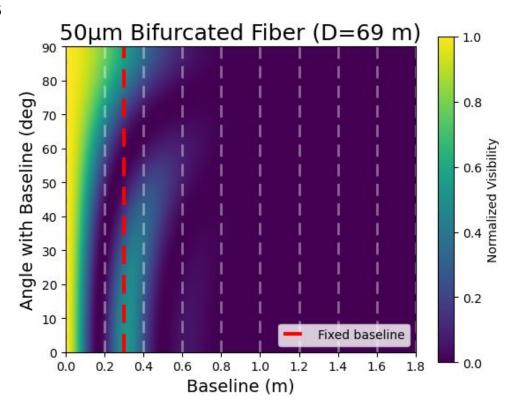
Binary star


- Bifurcated 50µm fiber at 69m
 - Two in one ferrule, separated by ~130μm
- "Close binary" but true uniform discs
- Fixed 30cm baseline: rotate fiber orientation and measure effect on visibility
- Clear noise floor
 - 55° orientation not usable

Binary star cont.

- Fit two equally-sized uniform discs
- Allow angular separation and zero-baseline visibility to vary
 - Fiber diameter fixed


0.005


Visibility vs Binary Alignment

 $V(\gamma; V_0, \Phi) = V_0 \left[\frac{2J_1(\pi B\theta/\lambda)}{(\pi B\theta/\lambda)} \right]^2 \cdot \frac{1 + f^2 + 2f\cos(2\pi B\Phi\cos(\gamma)/\lambda)}{(\pi B\theta/\lambda)^2}$

Binary star cont.

- Fit two equally-sized uniform discs
- Allow angular separation and zero-baseline visibility to vary
 - Fiber diameter fixed
- Microscope-measured value:
 137 ± 1 µm

Quick and dirty HBT

- Measured diameter of one fiber and separation of two
- Nice way to get started in intensity interferometry
 - Intermediary between in-lab and on-sky
- LED is usable source once it is filtered

Thank you to the organizers of this conference, my advisors Paul Stankus and Anze Slosar, and also Raphael Abrahao, Ethan Bailes, and Camila Toomey-Hellman.