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Quantum Technologies for SlI Telescopes
(and beyond)

+ Quantum metrology

- Optimal imaging using amplitude and intensity
iInterferometry

- Quantum networks, entanglement distribution,
clock synchronisation, and all that...



Quantum Metrology



Any measurement can be thought of as a three-part
orocess: Prepare, Evolve, Detect. (+ Feedback).
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Astronomy starting point:

—
/

_—

==

-

S =
\,
- =
-
—
~
—

s

m

17

\ //
"y

= -/



A big movement of the outcome distribution

will give a more precise measurement.

The probabillities of the
measurement outcomes
depend on the quantity 6,
otherwise our measurement

does not say anything about 6.

We can mathematically define

d

distance along the path 6

and ask the question: How
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The Fisher information measures the
movement of the probabillity distributions.

Ronald A. Fisher
(1890 — 1962)

The Fisher information / is the amount
of iInformation about a quantity 6 that
IS contained In a single measurement.

't Is a statistical quantity that tells us
something about the distinguishabillity
of probabillity distributions.



The precision of the measurement procedure
IS determined by the Fisher information.

The Crameéer-Rao result:

The Mean Square Error (66)2 IS
bounded by the inverse of the
Fisher information:

1
50)* >
0" 2 N1
Calyampudi Rao Harald Cramer . .
(1920 — 2023) 893 -1985)  where N s the number If

iIndependent measurements.
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The Fisher information is the metric In the
curved space of probabillity distributions.

- The statistical distance in the
orobabillity space:

» O dp(x]0)?
a5 = Z p(x|6)

- The threshold for distinguishing the
probability distributions is:

X

N6s® > 1

+ The Fisher information / is the speed
squared along the curve
(with 8 playing the role of proper time).




—Xample:
“A stopped clock gives the right time twice a day.”

- The probabillity distribution of
the measurement (i.e., time
readout) does not depend on
time (here 6 = 1).

herefore, ds/dB = O, and the
Fisher information is zero.

+ Conclusion: a stopped clock
cannot be used to tell time
accurately!




The difference between classical & quantum
Fisher information Is measurement optimality.

We have a probability
distribution from the
measurement procedure.

- The Fisher information Is
based directly on this
distribution.

- Optimise over all possible
quantum measurements.

- What Is the maximum
Fisher information??

- This Is called the quantum
Fisher information.

Both classical and quantum Fisher information can be
used for classical and quantum experiments!



Classical Fisher information:
what we have in our experiment

Quantum Fisher information:
what Nature allows us to extract
(can be calculated from the quantum state directly)



Astronomy: What are we dealing with"

Probabilities of photon numbers in thermal states
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The effect of multiple modes on g©)
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two photons from different modes also trigger the two-
photon detection signature — reduced g@.




Main question: what is the best instrument to
extract spatial information from thermal sources?

- We need to design instruments that measure the
observables that are optimal, 1.e., approach the quantum

Fisher information.

+ Compare the classical and guantum Fis
for amplitude interferometry with single-

ner Information

Dhoton states:

+ Compare this with the Fisher information for intensity

interferometry (i.e., two-photons);

-+ What about higher order correlation functions”
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We can construct an interferometer that beats
the Abbe limit—If we can find the right olbservable.

* <
—>
S %

In principle, we can measure any separation s > 0, even if
it IS much smaller than the Abbe limit.

s 0y ()
2 Ox

- Derivatives of Gaussians generate orthonormal functions.

+ Forsmalls: ¢(z £ 25) ~ (x) -

Nair & Tsang, Phys. Rev. Lett., 117, 190801 (2016).



“Unlimited” super resolution??

Sadly, no.

This argument
requires that the
two sources are
exactly equal In
brightness.

Here, g Is the
fraction of a single
source’s intensity.
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Large baseline telescopes with single-photons



Consider single-photon imaging

1 (0.0)
p= ;)e-"hw/kﬂ n) (nl ~ (1= €) [0) (0] + € |1) (1
- We neglect higher-order terms in the photon number
expansion of the single mode thermal state.

* Due to transverse coherence, a single photon will be In a
superposition of going to two telescopes:

1) 1|0) g + €' ?]0) |1) &



Measuring the position of a thermal point source,
one photon at a time

1) 1]0) g + €' ?]0) L|1) &

e Io(p) =1

f the single photon can
Interfere with itself on a
| 50:50 beam splitter, the
#g heceiver classical Fisher information
IS also 1.

Large baseline = photon
loss

Gottesman, Jennewein & Croke, Phys. Rev. Lett. 109, 070503 (2012).



Quantum Telescopes using Quantum Repeaters
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Receiver I |

requires guantum memories

Gottesman, Jennewein & Croke, Phys. Rev. Lett. 109, 070503 (2012).



Quantum Imaging using Quantum Error Correction
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Coherent capture of a photon QEC designed for
INnto a non-radiative atomic dephasing and
state using STIRAP to avoid amplitude damping
optical decay protects the phase ¢

Huang, Brennan & Ouyang, Phys. Rev. Lett. 129, 210502 (2022).



How can we create large baseline telescopes
without quantum repeaters, memories and QEC?

11) 1|0) g + € ?|0) ,|1) &

M. Marchese & P. Kok, Phys. Rev. Lett. 130, 160801 (2023).



Resolution for 2, 3, 4 photons against baseline a Lo
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a multiple of attenuation length Lo = 10 km
M. Marchese & P. Kok, Phys. Rev. Lett. 130, 160801 (2023);



What about low € and

partially distinguishable photons”?

€ N; 9% O Opnin (L as) Qlopt

2; 100 2.030 4

0.99 3,96 1.468 4.192
3,50 2.033 4.098
3;25 2.830 4.050
2; 100 3.999 4

0.5 3,96 2.3030 4.8911
3,50 3.1456 4.7868
3;25 4.2040 4.4409
2; 100 19.980 4

0.01 3,96 34.272 2.0732
3,50 43.449 2.0621
3;25 57.230 2.1542

S. Modak & P. Kok, Phys. Rev. A. 111, 043701 (2025).




2D positioning in the sky

- We need at least three 11,0,0) + e |o 1,0) + €2 (0,0, 1)
telescopes to estimate
two angles. /

- The multi-parameter guantum Cramér-Rao bound is
generally not saturable due to incompatibility of the
optimal measurements for ¢+ and ¢o.

A. Cullen, C Morrison & P. Kok, in preparation (2025).



Sending / teleporting the star photon into a three-
mode interferometer Is optimal.

- For a single photon, the 2D position 1,0,0) + et |0 1,0) + ei¢2 |0,0, 1)
maps onto two relative phases in a

three-mode interferometer.
- We optimised the interferometer over -%
the classical Fisher info., and found It

equal to the QFl matrix.

- Hence, this method is optimal.

) Lin. Opt. Interferometer
R A DI " I
> >< >< - u§ = =

A. Cullen, C Morrison & P. Kok, in preparation (2025).
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Classical Fisher information for
measuring source separation

N=100 10 m telescopes at D different positions (no AO)

Max baseline of 10 km, groups of 5 detectors at 20
locations

source brightness ratio is g = 0.2.

4

< 10 km >

Bojer et al., New Journal of Physics 24, 043026 (2022).



A comparison of intensity interferometry to
large baseline astronomical telescopes
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Bojer et al., New Journal of Physics 24, 043026 (2022).



Higher-order correlations

radius: 100 pm
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Going beyond...

Co

nstructing a Quantum

Repeater Network



—ntanglement through path erasure




Repeaters for guantum communication

( ) ( A ( A
Repeater 1 Repeater 2 Repeater n

>' Swap [>' Swap >' Swap

Igh secret bit rate at large distances
Low complexity at the stations

Minimal classical communication between stations.



The Repeater Protocol: Step 1
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-+ The sender stations S (and in this case Alice and Bob) send
photons to the receiver stations in two rounds to attempt a
double-heralding entanglement preparation.

Locally in both the S and R stations, the photons are
entangled with a solid state system that holds two qubits; a
client (¢) and a broker (b).

Vinay and Kok, arXiv:1607.08140 (2016).



The Repeater Protocol: Step 2

2) (A) R) 8] R) B)
§
8

- The R stations determine which of their qubits have been
successfully entangled with qubits in the S stations.

+ The 8 stations do not know which entanglement
procedures have been successtul at this point.

Vinay and Kok, arXiv:1607.08140 (2016).



The Repeater Protocol: Step 3

3) (A) R) 8] R) B)
 ® (@ &—® © ®
1% O <9 ©< |0
_ 9 e g @ e & (©

Immediately after the double-heralding protocol, both the R
and S stations map the broker qubits to the client qubits,
which have much longer coherence time. The S stations are
still flying blind.

- The R stations send a message to the nearest S stations
about which of their qubits are entangled.

Vinay and Kok, arXiv:1607.08140 (2016).



The Repeater Protocol: Step 4

4) (A) R)
4 g\ A\ N\
_ 6

- After this short-range classical communication, both the

S and R stations can now entangle the qubits that would
complete the chain.

- By using the broker qubits, double-heralding Is effectively
nearly always successful.

Vinay and Kok, arXiv:1607.08140 (2016).



The Repeater Protocol: Step 5

5 @ 0 0 0
(@ = B
&= S
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L8 ot g

Local deterministic CNOT operators on the two-qubit
solid state systems will now create the complete chain.

Vinay and Kok, arXiv:1607.08140 (2016).



The Repeater Protocol: Step 6

6) (A R)
0
e 0
® O

J
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- All the R and S stations measure their qubits in such a way
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that takes them out of the linear cluster chain, effectively
performing entanglement swapping.

- Alice and Bob now hold a maximally entangled state,

porovided the learn about the classical Pauli by-products

generated in the qubit measurements.

Vinay and Kok, arXiv:1607.08140 (2016).



Distillation

A1 % B1
Control Control
Target Target

A2 M 82

We have two pairs of imperfect entanglement in the state

pw(x) =z |TT) (T

Vinay and Kok, arXiv:1607.08140 (2016).



Distillation

Control Control

Target Target

Create entanglement between A1 and Az, as well as B+
and By via double-heralding.

Vinay and Kok, arXiv:1607.08140 (2016).



Distillation

Control Control

Target Target

Measure the target qubits A2 and Bo.

Vinay and Kok, arXiv:1607.08140 (2016).



Distillation

Assuming the measurement outcomes are the same.

O Os.

If the measurement outcomes are identical, then the pair
A1-B1 Is projected onto a maximally entangled state.

his requires classical communication. Alice and Bob can
assume all distillation works, and sort out the successful
from the unsuccessful distillation in post-selection.

Vinay and Kok, arXiv:1607.08140 (2016).




The optimised range of the repeater protocol
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Vinay and Kok, arXiv:1607.08140 (2016).



Quantum clock synchronisation

Charlie

We can use entanglement not only to synchronise
clocks, but also to establish a common reference frame.

llo-Okeke et al, npj Quant. Inf. 4, 40 (2018).



Conclusions

- We can rigorously compare the performance of
astronomical instruments and their optimal operation In
terms of the quantum and classical Fisher information.

-+ Quantum technigues allow us to go well beyond

traditional imaging techniques, but at the cost of the
complexity of the quantum instruments.

Dramatic improvements are possible when quantum

memories, repeaters and error correction become
avallable.



