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Quantum Technologies for SII Telescopes  
(and beyond)

• Quantum metrology 

• Optimal imaging using amplitude and intensity 
interferometry 

• Quantum networks, entanglement distribution, 
clock synchronisation, and all that…



Quantum Metrology



Any measurement can be thought of as a three-part 
process: Prepare, Evolve, Detect.

P E(θ) D

ρ(θ)ρ(0)
F

(+ Feedback).

Astronomy starting point:



A big movement of the outcome distribution 
will give a more precise measurement.

The probabilities of the 
measurement outcomes 
depend on the quantity θ, 
otherwise our measurement 
does not say anything about θ. 

We can mathematically define 
a distance along the path θ 
and ask the question: How 
often do I need to measure in 
order to distinguish between p 
and q? 

θ q

p



The Fisher information measures the 
movement of the probability distributions.

The Fisher information I is the amount 
of information about a quantity θ that 
is contained in a single measurement. 

It is a statistical quantity that tells us 
something about the distinguishability 
of probability distributions. 

Ronald A. Fisher 
(1890 – 1962)



The precision of the measurement procedure 
is determined by the Fisher information.

The Cramér-Rao result: 

The Mean Square Error (δθ)2 is 
bounded by the inverse of the 
Fisher information: 

where N is the number if 
independent measurements.

Calyampudi Rao 
(1920 – 2023)

Harald Cramér 
(1893 – 1985)



The space of probability distributions is highly 
curved, much like this Escher drawing.



The Fisher information is the metric in the 
curved space of probability distributions.

• The statistical distance in the 
probability space: 

• The threshold for distinguishing the 
probability distributions is:  

• The Fisher information I is the speed 
squared along the curve                 
(with θ playing the role of proper time).
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Quantum Fisher information of thermal fields
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In metrology and imaging we aim to achieve as high a pre-

cision as possible in order to learn the most about the sub-

ject under scrutiny. Each measurement should therefore

ideally give us the maximum amount of information about

the subject, and we can quantify this using the quantum

Fisher information [1, 2]. . . . Here we give an analytic

form of the quantum Fisher information for thermal fields

parametrised by the geometry of the source. We find that

it is composed of two terms, namely an intensity term and

a correlation term. We compare our results with the fa-

mous Hanbury Brown and Twiss experiment for measur-

ing stellar diameters using intensity correlation measure-

ments.

The Fisher information is a statistical quantity that relates
to the distinguishability of probability distributions. This
has a direct application in precision measurements. If ✓ is
a parameter that we wish to estimate, the root-mean-square
(RMS) error in ✓ for the measurement procedure is bounded
by (�✓)2 � [N I (✓)]�1, where N is the number of independent
measurements and I (✓) is the Fisher information. Imagine
a measurement setup that estimates ✓, with several possible
measurement outcomes x = (x1, . . . , xm ). The probabilities
of the outcomes must depend on ✓, otherwise the setup cannot
be used to estimate it. In the space of probability distributions,
we can define a continuous path from Pr(x|✓i ) to Pr(x|✓ f ),
where ✓ varies continuously from the initial value ✓i to the
final value ✓ f . The length along this path can be measured us-
ing the so-called statistical distance ds, which defines a metric
in the probability space:

ds2 =
X

x

Pr(x|✓) ⇥d log Pr(x|✓)⇤2 . (1)

The further that two probability distributions are apart from
each other (as measured by the statistical distance), the easier
it is to distinguish between them. For a finite distance �s2,
two distributions are distinguishable after N measurements if
N�s2 � 1. The Fisher information is given by the instanta-
neous speed (squared) along the path:

I (✓) =
 

ds
d✓

!2

. (2)

When there is more than one parameter ✓ = (✓1, . . . ,✓n ), the
Fisher information becomes a matrix

[I (✓)] jk =
X

x

Pr(x|✓)
@ log Pr(x|✓)
@✓ j

@ log Pr(x|✓)
@✓k

, (3)

which shows that the Fisher information is a (Riemannian)
metric on the tangent space of the probability simplex [3, 4].

It is important to note that I (✓) is defined given a particular
measurement procedure yielding the probability distribution
Pr(x|✓). We can now ask: what is the maximum Fisher in-
formation over all possible quantum measurements? This is
called the quantum Fisher information (QFI), and is a func-
tion of the quantum state ⇢ of the measured system [1]:

IQ (✓) = Tr[⇢L2] , (4)

where L is the symmetric logarithmic derivative (SLD), de-
fined implicitly by the relation

d⇢
d✓
=
⇢L + L⇢

2
. (5)

The SLD is generally a very di�cult quantity to calculate.
However, in the special case where the path in the probability
space is generated by a unitary evolution U = exp(�iH✓/~),
we can bound the QFI by the variance of the observable H ,
such that IQ (✓)  4(�H)2/~2 [2]. The RMS error in ✓ after a
single measurement is then given by

(�✓)2 � ~2

4(�H)2 . (6)

We recognise this as Heisenberg’s uncertainty relation for the
conjugate pair ✓ and H . It is clear that the quantum Fisher in-
formation plays a crucial role in the derivation of fundamental
limits in physics, and represents a core physical quantity on a
par in importance with the entropy of a system.

There are many important physical situations where H ei-
ther does not exist, or where it is practically impossible to find.
One such case is the QFI of a thermal optical field, where ✓
may be parameters characterising the geometry of the source.
Thermal fields are ubiquitous in nature, and knowing the QFI
for these states of light would help us determine the funda-
mental limitations on e.g., satellite imaging, detection of for-
eign objects, astronomical measurements, and many other ap-
plications. In addition, the specific form of the QFI (and the
SLD) can be used to determine the optimal measurement ob-
servable that achieves the fundamental limit [5], leading to
better practical imaging and metrology technologies.

In this Letter we present an analytic form for the quantum
Fisher information of thermal fields. Consider the general
density operator of a thermal field [6]:

⇢ =
Y

k,s

1X

nks=0

p(nks ) |nksi hnks | , (7)

where k is the wave vector of the light, s is the polarisation,
and p(nks ) is the thermal probability distribution over the pho-
ton number nks . This distribution depends on the source ge-
ometry parametrised by ✓, but we suppress this argument for
notational simplicity.
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2

mode structure of black body radiation (integration time,
detection area); justify the reduction to frequency modes.

extension to other thermal light
coherent properties of the source

The QFI for a thermal frequency mode ⌫ can be separated
into two independent contributions:

I (⌫)
Q = I (⌫)

int + I (⌫)
corr . (8)

Here, the information in the intensity of the thermal field is
given by the Fisher information matrix

f
I (⌫)
int

g
i j
=

X

n⌫

p(n⌫ )
@ log p(n⌫ )
@✓i

@ log p(n⌫ )
@✓ j

. (9)

When we map the measurement outcomes x to the photon
number n⌫ in the frequency mode ⌫, this term bears a strik-
ing resemblance to the classical Fisher information matrix in
equation (3). The information in the correlations of the field
in the detector plane is captured by

f
I (⌫)
corr

g
i j
=

Z

A⇥A

D
n2
⌫

E @ logJ⌫
@✓i

@ logJ⌫
@✓ j

dx dx
0 . (10)

We call the quantity J⌫ the cumulative coherence of the fre-
quency mode ⌫ in the detection plane, and it is given by

J⌫ ⌘
 

k⌫
2⇡R

!2

�(x,x0) , (11)

where k⌫ is the wave number of frequency mode ⌫, R the
distance between the source and the detector, A the detector
area, and �(x,x0) the complex degree of coherence between
two points x and x

0 in the detection plane [6]. Thus J is a
remarkably simple quantity that can easily be calculated for
various geometries. The complete proof of equations (8) –
(11) is given in the Supplementary Information.

As an example, consider the measurement of stellar di-
ameters via coincidence detection, as pioneered by Hanbury
Brown and Twiss [7]. Can we claim it is optimal?

In the paper we only need to explain the physical meaning of
n⌫ , p(n⌫ ), and J . The rest is covered in the SI.

ds2 =
X

x

dp(x|✓)2

p(x|✓) (12)

1. When we cannot find the generator for a parameter of
interest, what is the QFI?

2. In optics, a ubiquitous form of light is thermal radiation.

3. How well can we measure and imaging thermal
sources? (stars, satellite imaging, sensing of foreign ob-
jects)

4. Our expression for the QFI; additivity of the photon
number distribution and the coherence part makes it
clear whether to look for photon correlations.

5. HBT discussion (plus experimental limitations,
Dravins).

6. Ideal resolution versus what HBT found.

7. Can we derive a Heisenberg-like uncertainty relation
via the Cramér-Rao bound for the radius of a star and
some quantity based on the correlations?

⇤ mrkprc1@gmail.com
† p.kok@she�eld.ac.uk
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Example:  
“A stopped clock gives the right time twice a day.”

• The probability distribution of 
the measurement (i.e., time 
readout) does not depend on 
time (here θ = t). 

• Therefore, ds/dθ = 0, and the 
Fisher information is zero. 

• Conclusion: a stopped clock 
cannot be used to tell time 
accurately!



The difference between classical & quantum 
Fisher information is measurement optimality.

• We have a probability 
distribution from the 
measurement procedure. 

• The Fisher information is 
based directly on this 
distribution.

• Optimise over all possible 
quantum  measurements. 

• What is the maximum 
Fisher information? 

• This is called the quantum 
Fisher information. 

P E(θ) D
ρ(θ)ρ(0)

P E(θ)
ρ(θ)ρ(0)

?

Both classical and quantum Fisher information can be 
used for classical and quantum experiments!



Classical Fisher information:  
what we have in our experiment  

Quantum Fisher information: 
what Nature allows us to extract 
(can be calculated from the quantum state directly)



Astronomy: What are we dealing with? 
Probabilities of photon numbers in thermal states
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Amplitude interferometry

Intensity interferometry Single mode  
in the receiver
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The effect of multiple modes on g(2)
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• two photons from different modes also trigger the two-
photon detection signature → reduced g(2).



Main question: what is the best instrument to 
extract spatial information from thermal sources?

• We need to design instruments that measure the 
observables that are optimal, i.e., approach the quantum 
Fisher information.  

• Compare the classical and quantum Fisher information 
for amplitude interferometry with single-photon states; 

• Compare this with the Fisher information for intensity 
interferometry (i.e., two-photons); 

• What about higher order correlation functions?



The Abbe diffraction limit 

1840 – 1905
co-worker 

of 
Carl Zeiss

Minimum resolvable distance between two dots.

Not optimal! 
(CFI < QFI)



We can construct an interferometer that beats  
the Abbe limit—if we can find the right observable.

• In principle, we can measure any separation s > 0, even if 
it is much smaller than the Abbe limit. 

• For small s: 

• Derivatives of Gaussians generate orthonormal functions.

s

Nair & Tsang, Phys. Rev. Lett., 117, 190801 (2016).



“Unlimited” super resolution?

• Sadly, no.  

• This argument 
requires that the 
two sources are 
exactly equal in 
brightness. 

• Here, q is the 
fraction of a single 
source’s intensity.



Large baseline telescopes with single-photons



Consider single-photon imaging

• We neglect higher-order terms in the photon number 
expansion of the single mode thermal state. 

• Due to transverse coherence, a single photon will be in a 
superposition of going to two telescopes:



Measuring the position of a thermal point source,  
one photon at a time 

Gottesman, Jennewein & Croke, Phys. Rev. Lett. 109, 070503 (2012).

IQ(φ) = 1

• If the single photon can 
interfere with itself on a 
50:50 beam splitter, the 
classical Fisher information 
is also 1. 

• Large baseline = photon 
loss



Quantum Telescopes using Quantum Repeaters

Gottesman, Jennewein & Croke, Phys. Rev. Lett. 109, 070503 (2012).

requires quantum memories



Quantum Imaging using Quantum Error Correction

Huang, Brennan & Ouyang, Phys. Rev. Lett. 129, 210502 (2022).

Coherent capture of a photon 
into a non-radiative atomic 
state using STIRAP to avoid 
optical decay

QEC designed for 
dephasing and 

amplitude damping 
protects the phase φ



How can we create large baseline telescopes 
without quantum repeaters, memories and QEC?

M. Marchese & P. Kok, Phys. Rev. Lett. 130, 160801 (2023).



Resolution for 2, 3, 4 photons against baseline α L0

lower 
is 

better

M. Marchese & P. Kok, Phys. Rev. Lett. 130, 160801 (2023); 

ε = 1

multiple of attenuation length L0 = 10 km



What about low ε and  
partially distinguishable photons?

S. Modak & P. Kok, Phys. Rev. A. 111, 043701 (2025).



2D positioning in the sky

• We need at least three 
telescopes to estimate 
two angles.

• The multi-parameter quantum Cramér-Rao bound is 
generally not saturable due to incompatibility of the 
optimal measurements for φ1 and φ2.

A. Cullen, C Morrison & P. Kok, in preparation (2025).



Sending / teleporting the star photon into a three-
mode interferometer is optimal.

• For a single photon, the 2D position 
maps onto two relative phases in a 
three-mode interferometer. 

• We optimised the interferometer over 
the classical Fisher info., and found it 
equal to the QFI matrix. 

• Hence, this method is optimal. 

Lin. Opt. Interferometer

A. Cullen, C Morrison & P. Kok, in preparation (2025).



Quantum Fisher information  
for intensity interferometry



Classical Fisher information for  
measuring source separation

• N=100 10 m telescopes at D different positions (no AO) 

• Max baseline of 10 km, groups of 5 detectors at 20 
locations 

• source brightness ratio is q = 0.2.

10 km

Bojer et al., New Journal of Physics 24, 043026 (2022).



A comparison of intensity interferometry to 
large baseline astronomical telescopes

Bojer et al., New Journal of Physics 24, 043026 (2022).

This is the 
regime of 
interest  
for S.I.I.

(QFI)



Higher-order correlations

Pearce et al., Phys. Rev. A 92, 043831 (2015).



Going beyond… 
Constructing a Quantum Repeater Network



Entanglement through path erasure

236 Atomic quantum information carriers

The solution of this equation has an exponentially reducing amplitude for the excited state.
In other words, as time passes with no photon detected, the observer gains confidence that
the system must be in the ground state, and is incapable of producing a photon, as opposed
to an excited state which has not yet decayed.

7.4 Entangling operations via path erasure

A powerful consequence of the atom–photon interactions we have discussed in this chapter
is the possibility of creating entangled states of atoms by measuring the photons that they
emitted. There have been several proposals for how best to do this in recent years, and we
will here review some of the more promising candidates.

7.4.1 The weak driving limit

The simplest approach to entangling two atoms is to measure decay photons from a weakly
driven transition. Let us consider the set-up that is depicted schematically in Fig. 7.6. We
have two atoms in separate cavities that each have a !-configuration, i.e., two low-lying
states labeled |0⟩ and |1⟩, and a single excited state |e⟩. Both cavities are resonant with
the |e⟩-|1⟩ transition, which must be identical for each atom. We will assume that the only
significant atom–photon decay path is via photons in the resonant cavity mode. We further
assume that one of the cavity mirrors is somewhat more leaky than the other, such that
photons will always be emitted in the direction of that mirror.

Initialize the two atoms (i ∈ {1, 2}) in state |0⟩, and assume that the temperature is
low enough that thermal excitations are negligible. Each atom is now driven with a laser
resonant with |0⟩ ↔ |e⟩, but only weakly and for a short time. We therefore create only a

Fig. 7.6. (a) The general experimental set-up for entanglement generation through photon path erasure.
Two cavities are depicted at the bottom of the figure, each of which contains an atom. In the weak
driving case, each atom has the level structure shown in (b).



Repeaters for quantum communication

• High secret bit rate at large distances 

• Low complexity at the stations  

• Minimal classical communication between stations.

Repeater nRepeater 2Repeater 1ALICE BOB

Swap Swap Swap GateSwap



The Repeater Protocol: Step 1

• The sender stations S (and in this case Alice and Bob) send 
photons to the receiver stations in two rounds to attempt a 
double-heralding entanglement preparation. 

• Locally in both the S and R stations, the photons are 
entangled with a solid state system that holds two qubits; a 
client (c) and a broker (b).

RSRA B
c
b

1)

Vinay and Kok, arXiv:1607.08140 (2016).



RSRA B
c
b

2)

The Repeater Protocol: Step 2

• The R stations determine which of their qubits have been 
successfully entangled with qubits in the S stations.  

• The S stations do not know which entanglement 
procedures have been successful at this point.

Vinay and Kok, arXiv:1607.08140 (2016).



RSRA B
c
b

CC CC CC

CC

3)

The Repeater Protocol: Step 3

• Immediately after the double-heralding protocol, both the R 
and S stations map the broker qubits to the client qubits, 
which have much longer coherence time. The S stations are 
still flying blind. 

• The R stations send a message to the nearest S stations 
about which of their qubits are entangled.

Vinay and Kok, arXiv:1607.08140 (2016).



RSRA B
c
b

4)

The Repeater Protocol: Step 4

• After this short-range classical communication, both the 
S and R stations can now entangle the qubits that would 
complete the chain. 

• By using the broker qubits, double-heralding is effectively 
nearly always successful.

Vinay and Kok, arXiv:1607.08140 (2016).



RSRA B
c
b

5)

The Repeater Protocol: Step 5

• Local deterministic CNOT operators on the two-qubit 
solid state systems will now create the complete chain.

Vinay and Kok, arXiv:1607.08140 (2016).



RSRA B
c
b

6)

The Repeater Protocol: Step 6

• All the R and S stations measure their qubits in such a way 
that takes them out of the linear cluster chain, effectively 
performing entanglement swapping. 

• Alice and Bob now hold a maximally entangled state, 
provided the learn about the classical Pauli by-products 
generated in the qubit measurements. 

Vinay and Kok, arXiv:1607.08140 (2016).



Distillation

Vinay and Kok, arXiv:1607.08140 (2016).

• We have two pairs of imperfect entanglement in the state

A1

A2

B1

B2

Control

Target

Control

Target

4. ANALYSIS

We wish now to derive lower bounds on the secret key rates for both the cases with and without distillation. The
main error sources which we identify in a↵ecting the fidelity of the final state are dark counts in the detectors,
mismatching the parameters of the NV center cavities, failed gate operations when performing the indirect Bell
measurements, and decoherence on the nuclear spins. In considering the error analysis we may assume that all
measurement results give the +1 result, so if all operations are successful Alice and Bob would expect to share
| +i h +| as a final state (measurement results not equal to +1 can be accounted for in classical post-processing).
We consider the worst case scenario where a single failed operation maps to the state ⇢ = 1

414. By “successful
operation” we mean the quantum gates act as expected, the nuclear spins have not decohered, and we have not
mistaken a dark count detection as a true detection from a double-heralding round. Let the product of these
probabilities be x. Their shared state can be described by a Werner state:

⇢W (x) = x
�� +

↵ ⌦
 +

��+ 1� x

4
14. (2)

The quantity that we want to maximise is the secret key rate,

K = R [1� 2h2(e)] . (3)

R is the raw rate of bit generation, e = (1 � x)/2 is the probability of a bit (or, by symmetry, phase) error
rate, and h2(p) = �p log(p) � (1 � p) log(1� p) is the binary entropy function. The �2h2(e) term represents a
fraction of the bits that must be sacrificed to perform error correction and distill the raw key to a secret key.23

4.1 Dark counts

In assessing the e↵ects of dark counts, the key parameter of interest is tW , the waiting time. This is the time after
the excitation of the electrons in the NV centers that we should wait in order to receive the emitted photons.
If this is too small, we will miss the emitted photons, though if it is too great we will certainly measure a dark
count, decreasing the fidelity of our states. It should be chosen to maximize K.

We model the dark counts (DCs) as a Poissonian process, so we say that the probability of measuring k dark
counts in a time period t is

P (k DCs in t) =
(t�)ke�t�

k!
, (4)

where � is the average dark count rate. Also recall from Section 2.1 that the excited electrons decay with time
constant ⌧q, so the probability that they will have not decayed and emitted a photon after time t is e�t/⌧q .

Therefore, if we wait for a time tW after each photon emission, the probability, P1, that, after both rounds
of emission and detection used for double-heralding we will have detected one photon in each round is

2 P1 = (1� e
�tW /⌧q ) ⌘2 e

�2tW�

+ 2(1� e
�tW /⌧q ) ⌘ e

�tW� · tW� e
�tW�

h
1� (1� e

�tW /⌧q )⌘
i

+
h
1� (1� e

�tW /⌧q )⌘
i2

· t2W�2 e
�2tW�

+ t
2
W�

2
e
�2tW�

h
1� (1� e

�tW /⌧q )⌘
i2

+ tW� e
�2tW�

h
1� (1� e

�tW /⌧q )2⌘2
i
,

(5)

where ⌘ is the e�ciency of photodetection. The first three lines are the contributions from the states |01i and
|10i, representing two real detections, one real detection and one DC, and two DCs respectively. The last two
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• Create entanglement between A1 and A2, as well as B1 
and B2 via double-heralding.
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• Measure the target qubits A2 and B2.
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• If the measurement outcomes are identical, then the pair 
A1-B1 is projected onto a maximally entangled state. 

• This requires classical communication. Alice and Bob can 
assume all distillation works, and sort out the successful 
from the unsuccessful distillation in post-selection.



The optimised range of the repeater protocol

We emphasize here that we are considering all noisy pairs to be the same. That is to say, the k
th order

statistic, Tk, for any given connection attempt is given by its expectation value. In reality, some connections are
going to be established sooner than others and so will have a higher fidelity. There remains the open question
of how best to pair up non-identical noisy pairs taken from some distribution.

5. PERFORMANCE

We have calculated the secret key rates for a range of total distances. It should be noted that there is not one
single choice of inter-repeater distance L0 that is best for all total distances. For short distances, a smaller L0

gives a higher rate due to the higher rate of connection between adjacent stations, while at higher distances the
constant overheads associated with each station (such as the gate errors) begin to dominate the errors, and we
get a higher rate by going to a longer L0 and lower number of sections. We have therefore numerically maximised
over L0 to produce the plots shown in Fig. 4.

The rates shown here are lower bounds, since we are not including the e↵ects of parallelisation. In reality,
when one section forms a connection across one of its pairs of qubits, the others will keep attempting to make
connections while waiting for the other sections to connect, meaning the true rate is likely to be far higher. We
say that the brokering quality, ⇠, is the probability that no operations involved in carrying out the brokered Bell
measurement have su↵ered heralded or non-heralded failures. We consider both a realistically attainable value
of ⇠ = 0.9525,26 and a reasonable expectation of a future value of ⇠ = 0.99. For all other parts of the calculation
we take worst-case scenarios to ensure that we arrive at a lower bound for the secret key rate. We have fixed
physical cost here to only 10 pairs of qubits per station. In addition to the realistic scenarios of ⇠ = 0.95 and
⇠ = 0.99, we show the optimized rate in line with the gate quality that is necessary for fault-tolerant quantum
computing, ⇠ = 0.999.

We have compared the resultant rates with other protocols, such as9,20,27,28 and those mentioned in the
introduction. We find that, when compared to systems which do not rely advanced techniques such as large
complex graph states or quantum computers, our protocol gives rates (normalized by number of qubits used) of
at least an order of magnitude greater than other methods.This is the case even with the conservative estimates
of the error rates and worst-case scenarios that we have described throughout.

Figure 4: Attainable secret key rates for di↵erent values of brokering quality, ⇠, optimised over values of inter-repeater

distance L0. Solid lines are without distillation, dashed lines are with.
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Quantum clock synchronisation

• We can use entanglement not only to synchronise 
clocks, but also to establish a common reference frame.

Ilo-Okeke et al, npj Quant. Inf. 4, 40 (2018).



Conclusions

• We can rigorously compare the performance of 
astronomical instruments and their optimal operation in 
terms of the quantum and classical Fisher information. 

• Quantum techniques allow us to go well beyond 
traditional imaging techniques, but at the cost of the 
complexity of the quantum instruments.  

• Dramatic improvements are possible when quantum 
memories, repeaters and error correction become 
available.


