What triangulations at criticality in TGFT?

May 22, 2025

 FAU^2 workshop on quantum gravity across scales: from physics at the Planck scale to effective theories

Tensorial Group Field Theory (TGFT)

TGFT: Lattice Quantum Gravity generated by auxiliary fields Φ :

$$Z^{\rm QG} = \int \mathcal{D}g \, \mathrm{e}^{\frac{\mathrm{i}}{\hbar} S_{\rm GR}[g]} \xrightarrow{\mathrm{discretize}}{\mathcal{M} \to \mathcal{C}} \sum_{\mathcal{C}} Z_{\mathcal{C}}^{\rm QG} \xrightarrow{\mathrm{continuum limit}}_{|\mathcal{C}| \to \infty} ??$$

$$\int \mathcal{D}\Phi \, \mathrm{e}^{-S_{\rm TGFT}[\Phi]} = \sum_{\Gamma} \lambda^{n_{\Gamma}} A_{\Gamma} \xrightarrow{\mathrm{criticality}}_{\lambda \to \lambda^{\star}} \operatorname{continuum GR}$$

- generalization of matrix-model description of 2D Liouville QG to D > 2
- $\Phi(g_i)$ excites geometric d.o.f. g_c on $\Gamma \cong C$
- ightarrow ensembles of lattices ${\cal C}$ with geometry g_c
- various lattice formulations Z^{GG}_C possible: spin-foams, Regge, dynamical triangulations,...

Approaching criticality dynamically

More couplings - which continuum limit/critical point to choose??

Matrix/Tensor models

TGFT phase space is very large...

Matrix diagrams Γ are gluings of polygons \rightarrow discrete surfaces

$$\operatorname{Tr}(M^4) = M_{ij}\delta_{jk}M_{kl}\delta_{lm}M_{mn}\delta_{no}M_{op}\delta_{pi} \cong$$

Diagramms Γ of rank-D tensors $\Phi_{a_1...a_D}$ are gluings of D-dim. polyhedra

$$\operatorname{Tr}_{\mathbf{X}}(\Phi) = \Phi_{ijk} \Phi_{lmn} \Phi_{opq} \Phi_{rst} \delta_{il} \delta_{jo} \delta_{kr} \delta_{mp} \delta_{ns} \delta_{qt} \cong \bigoplus \cong$$

Tensor "traces" Tr_{γ} are bijective to graphs γ

- Phase space spanned by couplings λ_γ for any graphs $\gamma=igoplus_{\gamma}, igodot_{\gamma}, igodot_{\gamma}, igodot_{\gamma}, \dots$
- D-valent graphs for single $\Phi(g_1,...,g_D)$ (but more can be generated [Oriti, Ryan, JT '1409])
- compatibility with full kinematic Hilbert space of LQG [Kaminski, Kisielowski, Lewandowski '0909]

Tensorial interactions and colours

- Phase-space point $\vec{\lambda} = (\lambda_{\gamma})$ describes theory/measure $e^{-\sum_{\gamma} \lambda_{\gamma} Tr_{\gamma}(\Phi)}$
- favours/disfavours triangulations with some building blocks γ over others

What ensembles of triangulations? = What theories at critical points?

- there are stable regimes (under the RG flow) of specific interaction types
- large-N techniques for tensorial (U(N)/O(N) invariant) interactions

$$\operatorname{Tr}_{\mathbf{C}}(T) = \Phi_{c_1 c_2 c_3} \Phi_{c_1' c_2 c_3} \Phi_{c_1 c_2' c_3'} \Phi_{c_1' c_2' c_3'} = c_1 \prod_{c_2', c_3'}^{c_2, c_3} c_1'$$

• even more phase space directions: "coloured" graphs $\prod_{i=1}^{n} \neq \prod_{i=1}^{n} \neq \prod_$

Today: Focus on the RG dynamics of colours

first results with L. Juliano in a simple stable regime ("cyclic melonic") [Phys. Lett. B 860 (2025) 139218]

Critical points via functional Renormalization Group (fRG)

Theory at scale k given by generating function with k-dep. IR-regulator \mathcal{R}_k

$$e^{W_k[J]} = \int D\Phi \, e^{-S[\Phi] - (\Phi, \mathcal{R}_k \Phi) + (J, \Phi)}$$

Scale-dependent effective action via Legendre transform w.r.t. $\varphi = \frac{\delta W_k[J]}{\delta J}$

$$\Gamma_k[\varphi] \equiv \sup_J \{(J,\varphi) - W_k[J]\} - (\varphi, \mathcal{R}_k \varphi)$$

RG flow determined by functional equation [Wetterich'93, Morris'94]

$$k\partial_k\Gamma_k[\varphi] = \frac{1}{2}\mathrm{Tr}\frac{k\partial_k\mathcal{R}_k}{\Gamma_k^{(2)}[\varphi] + \mathcal{R}_k}$$

Interpolates between microsc. theory $k=\Lambda^{\scriptscriptstyle\rm UV}$ and quantum effective action $\Gamma=\lim_{k\to 0}\Gamma_k$

Some useful generality: PF expansion yields Bell polynomials

"PF expansion": split Gaussian part \mathcal{K} in Γ_k such that with $P^{-1} = \mathcal{K} + \mathcal{R}_k$

• multinomial expansion for commutative series $F[\varphi]$

$$F[\varphi]^{l} = (a_{1}\varphi^{2} + a_{2}\varphi^{4} + \dots)^{l} = \sum_{s_{1}+s_{2}+\dots=l} {l \choose s_{1}, s_{2}, \dots} a_{1}^{s_{1}} a_{2}^{s_{2}} \cdots \varphi^{2\sum_{j\geq 1} js_{j}}$$

• \rightarrow at order $\varphi^{2n},$ sum over partitions $\sigma \vdash n$ of length $|\sigma| = l$

$$[\varphi^{2n}] \frac{1}{P^{-1} + F[\varphi]} = P \sum_{l \ge 1} (-P)^l \sum_{\substack{\sigma \vdash n \\ |\sigma| = l}} \binom{l}{s_1, s_2, \dots} a_1^{s_1} a_2^{s_2} \cdots$$

ordinary Bell polynomials (up to factor l!/n!)

$$\widehat{B}_{n,l}(a_1, a_2, \dots, a_{n-l+1}) = \sum_{\substack{\sigma \vdash n \\ |\sigma|=l}} \binom{n}{s_1, s_2, \dots, s_{n-l+1}} \prod_{j=1}^{n-l+1} (a_j)^{s_j}$$

Flow equations

General PF expansion for series $F[\varphi] = \sum_{j \ge 1} a_j \varphi^{2j}$:

$$k\partial_k\Gamma_k[\varphi] = \frac{1}{2} \operatorname{Tr} \left[k\partial_k \mathcal{R}_k \sum_{n\geq 1} \frac{\varphi^{2n}}{n!} P \sum_{l\geq 1} l! (-P)^l \widehat{B}_{n,l} \left(a_1, a_2, ..., a_{n-l+1} \right) \right]$$

Example: scalar field theory

$$\Gamma_k[\varphi] = \int \varphi \mathcal{K}\varphi + \sum_{n \ge 2} \frac{\lambda_{2n}}{2n} \varphi^{2n} = \int \varphi \mathcal{K}\varphi + \frac{\lambda_4}{4} + \frac{\lambda_6}{6} + \frac{\lambda_8}{8} + \frac{\lambda_8}{8} + \dots$$

Then $a_j = (2j+1)\lambda_{2j+2}$ (since $\Gamma_k^{(2)} \equiv \mathcal{K} + F[\varphi] = \mathcal{K} + \sum_{n\geq 2} (2n-1)\lambda_{2n}\varphi^{2n-2}$):

$$k\partial_k\lambda_{2n} = P\sum_{l\geq 1} l!(-P)^l \widehat{B}_{n,l}(3\lambda_4, 5\lambda_6, \ldots) \equiv \beta_{2n}(3\lambda_4, 5\lambda_6, \ldots)$$

Vector theory

Vector-valued scalar field φ_a , a = 1, ..., N:

$$\Gamma_{k}[\varphi] = \int \varphi_{a} \mathcal{K} \varphi_{a} + \sum_{n \geq 2} \frac{\lambda_{2n}}{2n} (\varphi_{a} \varphi_{a})^{n} = \int \varphi_{a} \mathcal{K} \varphi_{a} + \frac{\lambda_{4}}{4} \mathbf{X} + \frac{\lambda_{6}}{6} \mathbf{X} + \frac{\lambda_{8}}{8} \mathbf{X} + \dots$$

 $\Gamma_k^{(2)}$ has two parts: $F_{ab}(\varphi) = \sum_{j\geq 1} \lambda_{2j+2} \left(2j\varphi_a \varphi_b + \varphi^2 \delta_{ab} \right) (\varphi^2)^{j-1}$

Universality classes for various N from balance of factors $2j+1 \mbox{ vs. } N-1$

"Tensor theory pprox (Vector theory) D "

Tensor field $\varphi_{a_1...a_D}$: "cyclic melons" dominate at large N

$$\Gamma_k[\varphi] = \int \varphi \mathcal{K}\varphi + \sum_{c=1}^r \left(\frac{\lambda_4^c}{4} \bigvee_{c=1}^c + \frac{\lambda_6^c}{6} \bigvee_{c=1}^c + \frac{\lambda_8^c}{8} \bigvee_{c=1}^c + \dots \right)$$

• LO N^{D-1} only if all λ_{2i}^c of same colour c:

$$\sum_{c} c \propto N^{D-1} \sum_{c} c \propto$$

- different $c_1 \neq c_2$ generate other stuff, but NLO: $c_1 = c_2 \propto N^{D-2}$
- \rightarrow At large N, same combinatorics as large-N vector theory for each colour c:

$$k\partial_k\lambda_{2n}^c \underset{N \to \infty}{=} \beta_{2n}(\lambda_4^c, \lambda_6^c, ...)$$

Anomalous dimension in TGFT

Propagating tensor d.o.f. $a_c = j_c/V$ (yields tensor scale $N_k = V \cdot k$): Field renormalization Z_c for each colour *necessary*: $\mathcal{K} = \sum_{c=1}^r Z_{c,k} (j_c/V)^2 + \mu_k$

$$ightarrow$$
 (optimized) regulator: $\mathcal{R}_k(\boldsymbol{j}) = \left(ar{Z}_k k^2 - k^2 \sum_{c=1}^r Z_{c,k} (j_c/N_k)^2
ight) heta \left(N_k^2 - \sum_{c=1}^D j_c^2
ight)$

Each colour c contributes a part $\eta_c = -\frac{k\partial_k Z_c}{Z}$ to the anomalous dimension

$$\bar{\eta} = -\frac{k\partial_k \bar{Z}}{\bar{Z}} = \frac{1}{D}\sum_{c=1}^r \eta_c , \qquad \bar{Z} = \frac{1}{D}\sum_{c=1}^D Z_c$$

because

$$k\partial_k \mathcal{R}_k(\boldsymbol{j}) = 2\bar{Z}k^2 \left(1 - \frac{\bar{\eta}}{2} + \sum_c \frac{\eta_c}{2} \frac{j_c^2}{N_k^2}\right) \theta\left(N_k^2 - \sum_{c=1}^D j_c^2\right)$$

Coupling of fRG equations at quadratic order

Flow equations at φ^2 couple the colour sectors: (with $F(\eta_c) = 1 - \frac{1}{2} \frac{\bar{\eta} + \eta_c}{d_D + 2}$)

$$k\partial_k\tilde{\mu}_k - (\bar{\eta} - 2)\tilde{\mu}_k = \sum_{c=1}^D F(\eta_c)\beta_2(\tilde{\mu}_k, \tilde{\lambda}_{2i}^c)$$
$$k\partial_k\tilde{\lambda}_{2n}^c + d_D\tilde{\lambda}_{2n}^c - n(d_D + \bar{\eta} - 2)\tilde{\lambda}_{2n}^c = F(\eta_c)\beta_{2n}(\tilde{\mu}_k, \tilde{\lambda}_{2i}^c)$$

- isotropic case $\tilde{\lambda}_{2n}^c = \tilde{\lambda}_{2n}$ agrees with previous results, same isotropic fixed points
- "s-regimes": only $1 \le s \le D$ couplings $\tilde{\lambda}_{2n}^c \neq 0$
- fixed points with multiplicity $\binom{D}{s}$

s-isotropic fixed points

Isotropic flow equation in an s-regime: (with $F_s(\bar{\eta}) = 1 - \frac{\frac{D}{s} + 1}{\frac{d}{d_D + 2}\frac{\bar{\eta}}{2}}$)

$$k\partial_k\tilde{\mu}_k - (\bar{\eta} - 2)\,\tilde{\mu}_k = s\,F_s(\bar{\eta})\,\beta_2(\tilde{\mu}_k,\tilde{\lambda}_{2i})$$
$$k\partial_k\tilde{\lambda}_{2n} + d_D\tilde{\lambda}_{2n} - n\,(d_D + \bar{\eta} - 2)\,\tilde{\lambda}_{2n} = F_s(\bar{\eta})\,\beta_{2n}(\tilde{\mu}_k,\tilde{\lambda}_{2i})$$

- dimension $d_D = d_G(D-1)$ and scaling not changed, but factors D/s
- critical exponents θ : Gaussian directions θ^{G} and "angular/radial" θ^{A}, θ^{R}
- \rightarrow only one Wilson-Fisher type fixed point for s = D (single relevant direction)
- s < D fixed points: candidates for asymptotic safety (finite # rel. directions)

s	$ ilde{\mu}_k^*$	$10\tilde{\lambda}^*_{2\cdot 2}$	$10^2 \tilde{\lambda}^{*}_{2.3}$	θ_1	$ heta_2^{\scriptscriptstyle m G}$	$ heta_2^{\scriptscriptstyle m A}$	$\theta_2^{\scriptscriptstyle \mathrm{R}}$	$ heta_3^{ m G}$	$ heta_3^{\scriptscriptstyle m A}$	$ heta_3^{ ext{R}}$
1	-0.38835	2.9058	16.738	1.0000	1	/	-1.0000	0	/	-3.0000
2	-0.55944	1.0858	3.2449	0.64994	1	-0.38149	-1.5265	0	-2.6136	-3.5635
3	-0.65573	0.51811	0.94544	0.51716	1	-0.38149	-1.7654	0	-2.6136	-3.9317
4	-0.71749	0.28633	0.35186	0.45217	/	-0.38149	-1.8761	/	-2.6136	-4.1011

 $d_D = 3$ with $\bar{\eta} = 0$ at order φ^{24} :

Fixed points in critical dimension

Anomalous dimension yields new fixed points:

- several branches connected to $\tilde{\mu}_k = 0$ at $d_D = 4$
- "Wilson-Fisher" fixed point also for $d_D \ge 4$

s	$\tilde{\mu}_k^*$	$\bar{\eta}^*$	$10\tilde{\lambda}^*_{2\cdot 2}$	$10^2 \tilde{\lambda}_{2.3}^*$	θ_1	θ_2^{G}	θ_2^A	θ_2^R	θ_3^G	θ_3^A	θ_3^R
1	-0.38160	-0.13100	2 0186	16.530	0.78152	0.26217	/	-2.4360	-1.6067	/	-3 4757
1	-0.50100	-0.15105	2.9100	10.550	0.70152	0.20217		-2.4303	-1.0007	/ <u>/</u>	-3.4131
1	-0.47879	-0.23236	2.6014	15.580	0.79536	0.46472	/	-2.4250	-1.3029	/	-3.0706
1	-0.55347	-0.39334	2.2071	13.091	1.0362	0.78669	/	-1.9567	-0.81997	/	-9.3463
2	-0.28277	-0.11869	1.5374	2.2712	1.0565	0.23739	-0.74750	-3.3581	-1.6439	-1.2248	-3.5003
2	-0.62457	-0.45014	1.0357	3.2407	-0.32774	0.90029	-2.2771	-5.4425	-0.64957	-3.8345	-7.3678
3	-0.72775	-0.69033	0.45113	0.88234	1.4936	0.54809	1.3807	-1.6337	-1.2387	0.071000	-4.9059
3	-0.87521	-1.0897	0.12352	0.19475	2.0970	2.1794	1.5334	-1.9772	1.2691	0.35881	-14.163
3	-0.96742	-1.5470	0.0099619	0.0057458	-2.3200	3.0941	-0.52954	-37.022	2.6411	-6.0245	-106.83
4	-0.95561	-1.3584	0.013206	0.0071868	-0.61347	2.7168	-2.4397	-15.942	2.0752	-22.734	-49.439
5	-0.94714	-1.4194	0.014634	0.0071649	0.54992	/	-0.56823	-8.1386	/	-12.171	-28.966

$d_D = 4$ with flowing $\bar{\eta}$ at order φ^{20} :	
---	--

Anisotropic fixed points

- any kind of anisotropic fixed points possible
- at φ^4 truncation only (s_1, s_2) type fixed points $(s_1 \text{ couplings } \tilde{\lambda}_{2n}^c = \tilde{\lambda}_{2n}^1, s_2 \text{ couplings } \tilde{\lambda}_{2n}^c = \tilde{\lambda}_{2n}^2)$
- at higher orders, any partition types $(s_1, s_2, ...)$
- but calculation challenging, convergence?

			(- /		•	,			
(s_1, s_2)	$\tilde{\mu}_k^*$	η^{1*}	η^{2*}	$\tilde{\lambda}_{2\cdot 2}^{1*}$	$\tilde{\lambda}_{2\cdot 2}^{2*}$	θ_1	$\theta_2^{ m G}$	θ_2^A	θ_2^{R}
(4, 1)	-0.87423	5.3773	7.5628	0.33816	0.063274	87.055	/	14.251	-6.6718
(3, 2)	-0.88956	2.4321	9.5360	-0.019852	0.030340	64.833	/	10.547	-4.8224
(3, 2)	-0.87656	4.4527	8.2973	-0.19367	0.049911	82.660	/	13.519	-6.3059
(2, 2)	-0.86633	2.6650	10.396	-0.036422	0.041362	53.711	-10.449	10.449	-4.6924
(3, 1)	-0.85024	4.6088	9.7456	-0.43859	0.060429	69.156	-13.538	13.538	-6.2342
(2, 1)	-0.82707	3.1416	11.844	-0.095352	0.063919	44.279	-10.732	10.732	-4.7174

some (s_1, s_2) type fixed points at φ^4 :

Conclusions

- TGFT provides a completion of regularized QG, continuum limit at criticality
- Criticality/Continuum geometry is approached dynamically via RG flow
- Already the simplest (melonic) regime provides a plethora of fixed points

Outlook

- Big open question: characterize continuum geometry at fixed points!
- Intermediate challenge: step by step mapping of the huge phase space
- current puzzle: role of cyclic interactions an artifact of fRG?

Thanks for your attention!

 $X \oplus X$