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1. Quick review of quantum-reduced loop gravity
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4. Quantum dynamics of semiclassical states



A brief reminder of loop quantum gravity

An orthonormal basis on the kinematical Hilbert space:

ΨΓ(he1 , . . . , heN ) =
∏
e∈Γ

D(je)
mene

(he)

D(j)
mn(h) :=

√
2j + 1D(j)

mn(h)

Gauss constraint → SU(2) intertwiners at nodes

Elementary operators: Holonomy and flux
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D
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C
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Ĵ
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i D(j)(he) =

{
iD(j)(he)τ

(j)
i (e begins at v)

−iτ (j)i D(j)(he) (e ends at v)
τi = − i
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Geometric operators: Area, volume, ...



Quantum-reduced loop gravity

The Hilbert space of quantum-reduced loop gravity is spanned by the
”reduced spin network states” [Alesci, Cianfrani 2013]∏

e∈Γ□

D
(je)
jeje

(he)ie where D(j)
mn(h)ie := ie⟨jm|D(j)(h)|jn⟩ie

They are characterized by the following conditions:
– The state is defined on a cubical graph Γ□

– The magnetic numbers take the maximal (or minimal) value with respect to
the basis

Ĵ2|jm⟩i = j(j + 1)|jm⟩i Ĵi|jm⟩i = m|jm⟩i
where ie = x, y or z is chosen according to the direction of the edge e

– je ≫ 1 for every edge e

Quantum-reduced loop gravity = ”LQG in diagonal gauge” (Ea
i = 0 for a ̸= i)

M =

∫
d3x

∑
a̸=i(E

a
i )
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q

M̂ |Ψj⟩ = O
(

1√
j
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Operators on the reduced Hilbert space

For a large class of LQG operators, the action of the operator on a reduced spin
network state |Ψ0⟩ has the structure [I.M. 2020]

Ô|Ψ0⟩ = f(j)|Ψ⟩+ g(j)|Φ⟩
where |Ψ⟩ ∈ Hreduced, and for large j,

f(j) ≫ g(j)

This suggests that operators of quantum-reduced loop gravity can be obtained
from operators of full loop quantum gravity by dropping the small ”offending”
terms:

RÔ|Ψ0⟩ := f(j)|Ψ⟩
The reduced operator RÔ is:

– A well-defined operator on the reduced Hilbert space
– A good approximation of the action of the full operator Ô on the state |Ψ0⟩:∣∣∣∣Ô|Ψ0⟩ − RÔ|Ψ0⟩

∣∣∣∣∣∣∣∣Ô|Ψ0⟩
∣∣∣∣ ≪ 1

– Typically very simple in comparison with the corresponding full operator



The kinematical structure of the quantum-reduced model

Loop quantum gravity Quantum-reduced loop gravity(∏
v∈Γ

ιv

)
·
(∏

e∈Γ

D(je)(he)

) ∏
e∈Γ□

D
(je)
jeje

(he)ie

– States defined on arbitrary graphs – States defined on cubical graphs

– SU(2) intertwiners at nodes – No (non-trivial) intertwiner structure
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– SU(2) multiplication law – U(1)-like multiplication law
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Dynamics: Hamiltonian constraint

In the canonical formulation of LQG, the dynamics is governed by the Hamiltonian
constraint operator. As the classical starting point, we take

C(N) =
1

β2

∫
d3xN

(
ϵijkE

a
i E

b
jF

k
ab√

|detE|
+ (1 + β2)

√
|detE| (3)R

)
The operator obtained upon quantization can be interpreted in two different ways:

– As a Hamiltonian constraint in the vacuum theory, where it determines the
space of physical states through the condition

Ĉ(N)|Ψ⟩ = 0

– As a physical Hamiltonian in a model of gravity coupled to a suitable
reference matter field (irrotational dust) [Brown, Kuchař 1994; Giesel, Thiemann 2012;

Husain, Pawłowski 2013]:

i
d

dT
|Ψ(T )⟩ = Ĥphys|Ψ(T )⟩

where

Ĥphys = Ĉ(1)



Hamiltonian: Euclidean part

To obtain a Hamiltonian operator for the quantum-reduced model, we start with
an operator defined on a cubical graph in the framework of full LQG.

CE(N) =

∫
d3xN

ϵijkE
a
i E

b
jF

k
ab√

|detE|
We take the Euclidean part of the Hamiltonian to be represented by the operator
[Alesci, Assanioussi, Lewandowski, I.M. 2015; Yang, Ma 2015]

ĈE(N)|ΨΓ⟩ =
∑
v∈Γ

N(v)Ĉv
E |ΨΓ⟩

Ĉv
E =

∑
e∦e′ at v

ϵijk Tr
(
τ
(s)
k

̂D(s)(hαee′ )
)
Ĵ
(v,e)
i Ĵ

(v,e′)
j V̂−1

v

V̂−1
v = lim

ϵ→0

V̂v

V̂ 2
v + ϵ2

In the context of quantum-reduced loop gravity,
we use a graph-preserving regularization for the
loop αee′ . In the present work we also fix s = 1/2.



Hamiltonian: Lorentzian part

CL(N) =

∫
d3xN

√
|detE| (3)R

The integrated scalar curvature can be quantized as a well-defined operator on the
Hilbert space of a fixed cubical graph in LQG [Lewandowski, I.M. 2022].

The Ricci scalar is first expressed as
(3)R = (3)R

(
Ea

i ,DaE
b
i ,DaDbE

c
i

)
where DaE

b
i = ∂aE

b
i + ϵ k

ij A
j
aE

b
k. The covariant derivatives can be regularized on

a cubical graph using parallel transported (gauge covariant) flux variables

Ẽ(S, x0) =

∫
S

d2σ na(σ)hx(σ)→x0
Ea

i

(
x(σ)

)
τ ih−1

x(σ)→x0

For example

∆aE
b(v) :=

Ẽ
(
Sb(v+a ), v

)
− Ẽ

(
Sb(v−a ), v

)
2ϵ

= ϵ2DaE
b
i (v)τ

i +O(ϵ3)

This results in an operator of the form

ĈL(N)
∣∣∣
HΓ□

=
∑
v∈Γ□

N(v)R̂v

(
Êa(v), ∆̂aEb(v), ∆̂abEc(v)

)



The single-vertex model

Although the action of the Hamiltonian is explicitly computable on the entire
reduced Hilbert space, we will now consider a very simple model, which is
obtained by choosing a graph containing just a single six-valent node.

We assume that the spatial manifold has the topology of a three-torus (or has
periodic boundary conditions) so the graph is formed by three closed mutually
orthogonal edges.

The state space of the model is spanned by the orthonormal basis states

|jxjyjz⟩ = D
(jx)
jxjx

(hex)xD
(jy)
jyjy

(hey )yD
(jz)
jzjz

(hez )z



Hamiltonian for the single-vertex model

To obtain the Hamiltonian constraint for the single-vertex model, we compute

Ĉ(N)|jxjyjz⟩ = RĈ(N)|jxjyjz⟩+ lower order

The result is

RĈE(N)|jxjyjz⟩ = − 1

β2
N(v)

[√
jxjy
jz

ŝ(1)(ex)ŝ
(1)(ey)

+

√
jxjz
jy

ŝ(1)(ex)ŝ
(1)(ez) +

√
jyjz
jx

ŝ(1)(ey)ŝ
(1)(ez)

]
|jxjyjz⟩

RĈL(N)|jxjyjz⟩ = −16
1 + β2
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N(v)

[
j
3/2
x√
jyjz

[
ŝ(1/2)(ex)

]4
+

j
3/2
y√
jxjz

[
ŝ(1/2)(ey)

]4
+

j
3/2
z√
jxjy

[
ŝ(1/2)(ez)

]4]|jxjyjz⟩
where

ŝ(k)(ea)|ja⟩ =
1

2i

(
|ja + k⟩ − |ja − k⟩

)



Effective dynamics

Effective dynamics: Dynamics on a classical phase space generated by an effective
Hamiltonian function motivated by considerations from the quantum theory.

For example

Heff = Hgr(p, c) +Hmatter
d

dt
F (p, c) = {F,Heff}

on the phase space of a homogeneous and isotropic universe:

Ai
a = c(t)δia Ea

i = p(t)δai {c, p} = 1

A related quantity in LQG is the expectation value of the Hamiltonian operator in
a semiclassical state (peaked on a homogeneous and isotropic geometry). For the
Euclidean part of the Hamiltonian one has [Dapor, Liegener 2017; Zhang, Song, Han 2020]

Heff
E = ⟨ψ(p,c)|ĈE |ψ(p,c)⟩ = − 3

β2

√
p
sin2 µc

µ2
(µ = const.)

The classical expression H = −(3/β2)
√
pc2 is recovered in the limit µ→ 0.



The effective Hamiltonian: Lorentzian part

There is a certain formal similarity between the effective Hamiltonian

Heff
E = − 3

β2

√
p
sin2 µc

µ2

and the Euclidean Hamiltonian of the one-vertex model:

RĈE = − 1

β2

[√
ĵxĵy

ĵz
ŝ(1)(ex)ŝ

(1)(ey) + cycl. perm.

]
If we imagine that the same relation should hold for the Lorentzian part

RĈL = −16
1 + β2

β2

[
ĵ
3/2
x√
ĵy ĵz

[
ŝ(1/2)(ex)

]4
+ cycl. perm.

]

we can propose a conjecture:

Heff
L = −48

1 + β2

β2

√
p
sin4(µc/2)

µ2

A possible new Hamiltonian for loop quantum cosmology?

Note: Heff
L → 0 as µ→ 0, consistent with the interpretation as spatial curvature.



Effective dynamics: Evolution of the volume

H = Hgr(p, c) +
π2
ϕ

2p3/2

Classical trajectory:

Hgr = − 3

β2

√
pc2

The standard Hamiltonian:

Hgr = HE = − 3

β2

√
p
sin2 µc

µ2

The new proposal:

Hgr = HE − 48
1 + β2

β2

√
p
sin4(µc/2)

µ2

Dapor–Liegener model:

Hgr = HE + 3
1 + β2

β2

√
p
sin4 µc

µ2
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Effective dynamics: Classical region

The effective dynamics of the volume agrees with the classical trajectory in the far
future as well as far past of the bounce (unlike in the Dapor–Liegener model).

The trajectory v(ϕ) is symmetric under ϕ→ ϕ0 − ϕ (where ϕ0 is the value of ϕ at
the bounce).
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Effective dynamics: Bounce

Compared to the standard scenario,
the duration of the bounce is short-
ened, and the volume reaches a lower
minimum value.

The value of volume at the bounce is
given by

v
(0)
min =

(
βµπϕ√

6

)3/2

and

vmin =
v
(0)
min

8(1 + β2)3/4
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Quantum dynamics of semiclassical states

In the setting of the one-vertex model, we wish to study the dynamics of the states

|ψ0⟩ = |p0, c0⟩ex |p0, c0⟩ey |p0, c0⟩ez

where |p0, c0⟩e =
∑
j

√
2j + 1e−t(j−j0)

2/2e−ic0jD
(j)
jj (he)ie (p0 = j0 +

1
2 )

Using irrotational dust as the physical time variable, and considering only the
Euclidean part of the Hamiltonian, the time evolution of the state is given by

|ψ(T )⟩ = e−iĤphysT |ψ0⟩ with Ĥphys = ĈE(1)

We compute this numerically (using the functions expm_multiply from scipy.sparse.linalg

and expv from ExponentialUtilities.jl) under the assumption that the spins take values
in the finite range

ja ∈ {jmin, jmin + 1, . . . , jmax − 1, jmax}
Remarks:

– The subspace of |jxjyjz⟩ with all ja ∈ N is preserved under Ĥphys

– The lower limit jmin = 1 can be achieved by suitable factor ordering of Ĥphys

– The upper limit jmax is imposed by hand (e.g. jmax = 200; dimH = 8× 106)



Example 1: An expanding universe
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Example 2: A contracting universe
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Comparison with a 1D toy example
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Choice of the semiclassicality parameter t
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Conclusions

We gave a concrete proposal for a Hamiltonian constraint operator for
quantum-reduced loop gravity (as well as full LQG on a fixed cubical graph).
The Lorentzian part of the Hamiltonian is given by an operator representing the
scalar curvature of the spatial manifold.

The effective dynamics of a homogeneous and isotropic universe agrees with the
classical dynamics far from the bounce, but the specific details of the bounce
differ from those generated by the standard Hamiltonian.

Time evolution of quantum states in quantum-reduced loop gravity is numerically
accessible (over short enough time intervals, due to the cutoff imposed on the
spins) at least in the simplest possible example of the single-vertex graph.

To do:
– Include the Lorentzian term in the numerical simulations
– Study the anisotropic case (Bianchi I)
– Loop quantum cosmology with the new Lorentzian term?
– Effect of quantization ambiguities?

Thank you for your attention


