OIST IPMU

Emergent Late- and Early-Times Acceleration from Quantum Gravity

In collaboration with: T. Ladstätter and D. Oriti (but also review of results from M. De Cesare, A. Pithis, X. Pang, M. Sakellariadou...)

Luca Marchetti

FAU² Workshop on Quantum Gravity Across Scaless FAU Erlangen-Nürnberg 21 May 2025

OIST Kavli IPMU

The DESI galaxy survey

- BAOs create features in galaxy clusters of the size of the sound horizon at recombination.
- This is used as a ruler to determine the distance to different galaxies.
- In turn, this determines the Universe's evolution.

The ACT power spectra

- Ground based CMB observations.
- Higher angular resolution and targeted observation when compared to Planck.
- In practice: much smaller noise levels at small scales and extension to larger multipoles.

The DESI galaxy survey

- BAOs create features in galaxy clusters of the size of the sound horizon at recombination.
- This is used as a ruler to determine the distance to different galaxies.
- In turn, this determines the Universe's evolution.

The combined results continue to indicate a preference for a departure from the ACDM values of $(w_0 = -1, w_a = 0)$.

The DESI collaboration

The combined results continue to indicate a preference for a departure from the ACDM values of $(w_0 = -1, w_a = 0)$.

The DESI collaboration

Restriction of the parameter space for inflationary models. In particular, Starobinsky inflation disfavored at $\gtrsim 2\sigma$ for 50 < N < 60.

The ACT collaboration

The combined results continue to indicate a preference for a departure from the ACDM values of $(w_0 = -1, w_a = 0)$.

The DESI collaboration

Restriction of the parameter space for inflationary models. In particular, Starobinsky inflation disfavored at $\gtrsim 2\sigma$ for 50 < N < 60.

The ACT collaboration

Need for a paradigm shift?

GFT coherent states

- **Collectivity:** States should accommodate an infinite number of quanta. E.g.: coherent states $|\sigma\rangle$.
- Homogeneity: Wavefunction σ depends only on geometry and on a clock field χ , $\sigma = \sigma(g_a, \chi)$.
- Isotropy: Wavefunction σ depends only on a single spin label, $\sigma \equiv \sigma_j(\chi)$.
- Relationality: σ is localized in relational time (can alternatively be implemented on observables).

GFT coherent states

- Collectivity: States should accommodate an infinite number of quanta. E.g.: coherent states $|\sigma\rangle$.
- Homogeneity: Wavefunction σ depends only on geometry and on a clock field χ , $\sigma = \sigma(g_a, \chi)$.
- Isotropy: Wavefunction σ depends only on a single spin label, $\sigma \equiv \sigma_j(\chi)$.
- Relationality: σ is localized in relational time (can alternatively be implemented on observables).

Macroscopic dynamics = mean-field approximation

• Take simplest SD equations, i.e., the averaged quantum equations of motion: $\langle \delta S_{GFT} / \delta \hat{\varphi}^{\dagger} \rangle_{\sigma} = 0$.

GFT coherent states

- Collectivity: States should accommodate an infinite number of quanta. E.g.: coherent states $|\sigma\rangle$.
- Homogeneity: Wavefunction σ depends only on geometry and on a clock field χ , $\sigma = \sigma(g_a, \chi)$.
- Isotropy: Wavefunction σ depends only on a single spin label, $\sigma \equiv \sigma_j(\chi)$.
- Relationality: σ is localized in relational time (can alternatively be implemented on observables).

Macroscopic dynamics = mean-field approximation

• Take simplest SD equations, i.e., the averaged quantum equations of motion: $\langle \delta S_{GFT} / \delta \hat{\varphi}^{\dagger} \rangle_{\sigma} = 0$.

 $\mathcal{K}[\sigma] + \mathcal{U}[\sigma, \sigma^*] = 0.$

• Usually $\mathcal K$ is a 2nd order differential operator in relational time. $\mathcal U$ depends on the interactions $\mathcal V$.

GFT coherent states

- Collectivity: States should accommodate an infinite number of quanta. E.g.: coherent states $|\sigma\rangle$.
- Homogeneity: Wavefunction σ depends only on geometry and on a clock field χ , $\sigma = \sigma(g_a, \chi)$.
- Isotropy: Wavefunction σ depends only on a single spin label, $\sigma \equiv \sigma_j(\chi)$.
- Relationality: σ is localized in relational time (can alternatively be implemented on observables).

Macroscopic dynamics = mean-field approximation

• Take simplest SD equations, i.e., the averaged quantum equations of motion: $\langle \delta S_{GFT} / \delta \hat{\varphi}^{\dagger} \rangle_{\sigma} = 0$.

 $\mathcal{K}[\sigma] + \mathcal{U}[\sigma, \sigma^*] = 0.$

Usually K is a 2nd order differential operator in relational time. U depends on the interactions V.
 Macroscopic quantities = Averaged one-body operators

• Collective behavior is captured by one-body operators \hat{O} , such as $\hat{N} = \varphi^{\dagger} \cdot \hat{\varphi}$ and $\hat{V} = \hat{\varphi}^{\dagger} \cdot V[\hat{\varphi}]$.

GFT coherent states

- Collectivity: States should accommodate an infinite number of quanta. E.g.: coherent states $|\sigma\rangle$.
- Homogeneity: Wavefunction σ depends only on geometry and on a clock field χ , $\sigma = \sigma(g_a, \chi)$.
- Isotropy: Wavefunction σ depends only on a single spin label, $\sigma \equiv \sigma_j(\chi)$.
- Relationality: σ is localized in relational time (can alternatively be implemented on observables).

Macroscopic dynamics = mean-field approximation

• Take simplest SD equations, i.e., the averaged quantum equations of motion: $\langle \delta S_{GFT} / \delta \hat{\varphi}^{\dagger} \rangle_{\sigma} = 0$.

 $\mathcal{K}[\sigma] + \mathcal{U}[\sigma, \sigma^*] = 0.$

Usually K is a 2nd order differential operator in relational time. U depends on the interactions V.
 Macroscopic quantities = Averaged one-body operators

• Collective behavior is captured by one-body operators \hat{O} , such as $\hat{N} = \varphi^{\dagger} \cdot \hat{\varphi}$ and $\hat{V} = \hat{\varphi}^{\dagger} \cdot V[\hat{\varphi}]$.

• Only need volume $V \equiv \langle \hat{V} \rangle_{\sigma} = \sum_{j} V_{j} \rho_{j}^{2}$, with $\sigma_{j} \equiv \rho_{j} e^{i\theta_{j}}$, to describe cosmological quantities:

$$\bar{V}a^3 = V = \sum_j V_j \rho_j^2$$
, $H^2 = \frac{\pi_\chi^2}{9V^2} \left(\frac{V'}{V}\right)^2$, $w = 3 - 2\frac{VV''}{(V')^2}$

LM, Oriti, Pithis, Thürigen 2211.12768; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; LM, Wilson-Ewing 2412.14622...

Luca Marchetti

Emergent Cosmology from QG

The spherical cat model

$$\mathcal{V}[\sigma,\sigma^*] = -\sum_j \left(m_j^2 |\sigma_j|^2 + 2\frac{\lambda_j}{n_j} |\sigma_j|^{n_j} \right)$$

De Cesare, Pithis, Sakellariadou 1606.00352; De Sousa, Barrau, Martineau 2305.05438.

$$\mathcal{V}[\sigma,\sigma^*] = -\sum_j \left(m_j^2 |\sigma_j|^2 + 2\frac{\lambda_j}{n_j} |\sigma_j|^{n_j} \right)$$

Model and assumptions

- (Pseudo-)Tensorial interactions: Chosen phenomenologically to depend only on $|\sigma_j| \equiv \rho_j$.
- Truncation: Only one interaction is considered, with 2 < n_j.
- Single spin: One mode σ_{j_o} dominates the universe's evolution: $V = V_{j_o} \rho_{j_o}^2 \equiv V_{j_o} \rho^2$.

Good news

$$\mathcal{V}[\sigma,\sigma^*] = -\sum_j \left(m_j^2 |\sigma_j|^2 + 2\frac{\lambda_j}{n_j} |\sigma_j|^{n_j} \right)$$

Model and assumptions

- (Pseudo-)Tensorial interactions: Chosen phenomenologically to depend only on $|\sigma_j| \equiv \rho_j$.
- Truncation: Only one interaction is considered, with 2 < n_j.
- Single spin: One mode σ_{j_o} dominates the universe's evolution: $V = V_{j_o} \rho_{j_o}^2 \equiv V_{j_o} \rho^2$. Results

$$H^2 \xrightarrow[late times]{} rac{8\pi_{\phi}^2}{9} \left(\Lambda_{\lambda} V^{-(3-n/2)}\right)$$

- Late times dynamics: As the volume grows, ρ grows and high-order interactions dominate.
- Emergent acceleration: If n=6, emergence of a cosmological const., $\Lambda_{\lambda} = -\lambda V_{j_0}^{-2}/6$.

De Cesare, Pithis, Sakellariadou 1606.00352; De Sousa, Barrau, Martineau 2305.05438.

Good news

$$\mathcal{V}[\sigma,\sigma^*] = -\sum_j \left(m_j^2 |\sigma_j|^2 + 2\frac{\lambda_j}{n_j} |\sigma_j|^{n_j} + 2\frac{\mu_j}{n_j'} |\sigma_j|^{n_j'} \right)$$

Model and assumptions

- (Pseudo-)Tensorial interactions: Chosen phenomenologically to depend only on $|\sigma_j| \equiv \rho_j$.
- ► Truncation: Only two interactions are considered, with 2 < n_j < n'_j.
- Single spin: One mode σ_{j_o} dominates the universe's evolution: $V = V_{j_o} \rho_{j_o}^2 \equiv V_{j_o} \rho^2$.

Results

Good news

$$H^2 \xrightarrow[late times]{} rac{8\pi_{\phi}^2}{9} \left(\Lambda_{\lambda} V^{-(3-n/2)} + \Lambda_{\mu} V^{-(3-n'/2)}
ight)$$

- Late times dynamics: As the volume grows, ρ grows and high-order interactions dominate.
- Emergent acceleration: If $\Lambda_{\mu} = 0$ and n = 6, emergence of a cosmological const., $\Lambda_{\lambda} = -\lambda V_{i_{\alpha}}^{-2}/6$.
- Inflation? If μ > 0 (Λ_μ < 0), acceleration ends after N(μ) e-folds.</p>

De Cesare, Pithis, Sakellariadou 1606.00352; De Sousa, Barrau, Martineau 2305.05438.

$$\mathcal{V}[\sigma,\sigma^*] = -\sum_j \left(m_j^2 |\sigma_j|^2 + 2\frac{\lambda_j}{n_j} |\sigma_j|^{n_j} + 2\frac{\mu_j}{n_j'} |\sigma_j|^{n_j'} \right)$$

Model and assumptions

- (Pseudo-)Tensorial interactions: Chosen phenomenologically to depend only on $|\sigma_j| \equiv \rho_j$.
- ► Truncation: Only two interactions are considered, with 2 < n_j < n'_j.
- Single spin: One mode σ_{j_o} dominates the universe's evolution: $V = V_{j_o} \rho_{j_o}^2 \equiv V_{j_o} \rho^2$.

Results

Good news

$$H^2 \xrightarrow[late times]{} rac{8\pi_{\phi}^2}{9} \left(\Lambda_{\lambda} V^{-(3-n/2)} + \Lambda_{\mu} V^{-(3-n'/2)}
ight)$$

- Late times dynamics: As the volume grows, ρ grows and high-order interactions dominate.
- Emergent acceleration: If $\Lambda_{\mu} = 0$ and n = 6, emergence of a cosmological const., $\Lambda_{\lambda} = -\lambda V_{i_0}^{-2}/6$.
- Inflation? If μ > 0 (Λ_μ < 0), acceleration ends after N(μ) e-folds.</p>

Limitations

- No QG inflation: μ -interactions dominate and generate a recollapse: cyclic universe.
- No radiation phase (minor): For the above interactions, $H^2 \propto a^{-\alpha}$, with $\alpha < 3/2 < 4$.

De Cesare, Pithis, Sakellariadou 1606.00352; De Sousa, Barrau, Martineau 2305.05438.

Luca Marchetti

Emergent Cosmology from QG

Adding details (and modes)

$$\mathcal{V}[\sigma,\sigma^*] = -\sum_{j} \left(m_j^2 |\sigma_j|^2 + 2 \frac{\lambda_j}{n_j} |\sigma_j|^{n_j} \right)$$

Oriti, Pang 2105.03751 and 2502.12419.

Luca Marchetti

$$\mathcal{V}[\sigma,\sigma^*] = -\sum_j \left(m_j^2 |\sigma_j|^2 + 2\frac{\lambda_j}{n_j} |\sigma_j|^{n_j} \right)$$

Model and assumptions

- (Pseudo-)Tensorial interactions: Chosen phenomenologically to depend only on $|\sigma_j| \equiv \rho_j$.
- Two modes: Both ρ_{j_1} and ρ_{j_2} contribute to V, but one of them will dominate eventually.

Oriti, Pang 2105.03751 and 2502.12419.

Luca Marchetti

$$\mathcal{V}[\sigma,\sigma^*] = -\sum_j \left(m_j^2 |\sigma_j|^2 + 2 \frac{\lambda_j}{n_j} |\sigma_j|^{n_j} \right)$$

Model and assumptions

- (Pseudo-)Tensorial interactions: Chosen phenomenologically to depend only on $|\sigma_j| \equiv \rho_j$.
- Two modes: Both ρ_{j_1} and ρ_{j_2} contribute to V, but one of them will dominate eventually.

Phantom dark energy

$$w \xrightarrow[late times]{} -1 - \frac{h}{V}$$

- Emergent phantom dark energy with no field theoretical issue.
- Fast transition: End of Friedmann phase, phantom crossing, and minimal value of w are close to each other.
- Recent crossing: If we are in a phantom phase, the crossing must have happened recently.
- Increased H₀ with respect to single-mode.

A more realistic model

Emergent Cosmology from QG

A more realistic model

$$\mathcal{V}[\sigma,\sigma^*] = -\sum_j \left(m_j^2 |\sigma_j|^2 + \lambda_j e^{i\vartheta} \sigma_j^I + \text{ c.c} \right)$$

Ladstätter, LM, Oriti (to appear).

Luca Marchetti

$$\rho_j^{\prime\prime} - [(\theta_j^\prime)^2 + m_j^2]\rho_j - \lambda_j \cos \varphi_j \rho_j^\prime = 0 \qquad \rho_j \theta_j^{\prime\prime} + 2\rho_j^\prime \theta_j^\prime - \lambda_j \sin \varphi_j \rho_j^\prime = 0$$

Model and Assumptions

- (Pseudo-)Simplicial interactions: Less symmetric, but more easily connected to simplicial gravity.
- Phase dependence: Equations depend on ρ_j and θ_j (also in $\varphi_j \equiv \vartheta_j n\theta_j$, n = l + 1).
- ▶ Single-mode: All computations done in a single-mode *j*_o scenario (*j*_o dropped from now on).

Ladstätter, LM, Oriti (to appear).

Luca Marchetti

$$\rho_j^{\prime\prime} - [(\theta_j^\prime)^2 + m_j^2]\rho_j - \lambda_j \cos \varphi_j \rho_j^\prime = 0 \qquad \rho_j \theta_j^{\prime\prime} + 2\rho_j^\prime \theta_j^\prime - \lambda_j \sin \varphi_j \rho_j^\prime = 0$$

Model and Assumptions

- (Pseudo-)Simplicial interactions: Less symmetric, but more easily connected to simplicial gravity.
- Phase dependence: Equations depend on ρ_j and θ_j (also in $\varphi_j \equiv \vartheta_j n\theta_j$, n = l + 1).
- ▶ Single-mode: All computations done in a single-mode *j*_o scenario (*j*_o dropped from now on).

Evolving Dark Energy

 Asymptotically autonomous system: standard stability analysis possible.

$$x = \theta$$
, $y = \rho' / \rho^3$, $z = \theta'$.

$$\begin{split} & x' = z \;, \\ & y' = -3\rho^2 y^2 + (z^2 + m^2)/\rho^2 + \lambda \rho^{l-3} \cos \varphi(x) \;, \\ & z' = -2\rho^2 y z + \lambda \rho^{l-1} \sin \varphi(x) \;. \end{split}$$

Pseudosimplicial: Goo

Ladstätter, LM, Oriti (to appear).

Luca Marchetti

Emergent Cosmology from QG

$$\rho_j^{\prime\prime} - [(\theta_j^\prime)^2 + m_j^2]\rho_j - \lambda_j \cos \varphi_j \rho_j^\prime = 0 \qquad \rho_j \theta_j^{\prime\prime} + 2\rho_j^\prime \theta_j^\prime - \lambda_j \sin \varphi_j \rho_j^\prime = 0$$

Model and Assumptions

- (Pseudo-)Simplicial interactions: Less symmetric, but more easily connected to simplicial gravity.
- Phase dependence: Equations depend on ρ_j and θ_j (also in $\varphi_j \equiv \vartheta_j n\theta_j$, n = l + 1).
- Single-mode: All computations done in a single-mode j_o scenario (j_o dropped from now on).

Evolving Dark Energy

Ladstätter, LM, Oriti (to appear).

Luca Marchetti

Emergent Cosmology from QG

0.4

$$\rho_j^{\prime\prime} - [(\theta_j^\prime)^2 + m_j^2]\rho_j - \lambda_j \cos \varphi_j \rho_j^\prime = 0 \qquad \rho_j \theta_j^{\prime\prime} + 2\rho_j^\prime \theta_j^\prime - \lambda_j \sin \varphi_j \rho_j^\prime = 0$$

Model and Assumptions

- (Pseudo-)Simplicial interactions: Less symmetric, but more easily connected to simplicial gravity.
- Phase dependence: Equations depend on ρ_j and θ_j (also in $\varphi_j \equiv \vartheta_j n\theta_j$, n = l + 1).
- Single-mode: All computations done in a single-mode j_o scenario (j_o dropped from now on).

Evolving Dark Energy

Ladstätter, LM, Oriti (to appear).

Luca Marchetti

Emergent Cosmology from QG

$$\rho_j^{\prime\prime} - [(\theta_j^\prime)^2 + m_j^2]\rho_j - \lambda_j \cos \varphi_j \rho_j^\prime = 0 \qquad \rho_j \theta_j^{\prime\prime} + 2\rho_j^\prime \theta_j^\prime - \lambda_j \sin \varphi_j \rho_j^\prime = 0$$

Model and Assumptions

- (Pseudo-)Simplicial interactions: Less symmetric, but more easily connected to simplicial gravity.
- Phase dependence: Equations depend on ρ_j and θ_j (also in $\varphi_j \equiv \vartheta_j n\theta_j$, n = l + 1).
- ▶ Single-mode: All computations done in a single-mode *j*_o scenario (*j*_o dropped from now on).

Evolving Dark Energy

Asymptotically autonomous system: standard stability analysis possible.
 I=5: y' = x' = z' = 0 asymptotic fixed point!
 Late-times de Sitter attractor!
 Equivalently, w → -1 at late times.
 Oscillations around w = -1: At late times, w tends to -1 with damped oscillations.

Ladstätter, LM, Oriti (to appear).

Luca Marchetti

Emergent Cosmology from QG

$$\rho_j^{\prime\prime} - [(\theta_j^\prime)^2 + m_j^2]\rho_j - \lambda_j \cos \varphi_j \rho_j^\prime = 0 \qquad \rho_j \theta_j^{\prime\prime} + 2\rho_j^\prime \theta_j^\prime - \lambda_j \sin \varphi_j \rho_j^\prime = 0$$

Model and Assumptions

- (Pseudo-)Simplicial interactions: Less symmetric, but more easily connected to simplicial gravity.
- Phase dependence: Equations depend on ρ_j and θ_j (also in $\varphi_j \equiv \vartheta_j n\theta_j$, n = l + 1).
- ▶ Single-mode: All computations done in a single-mode *j*_o scenario (*j*_o dropped from now on).

Evolving Dark Energy

Ladstätter, LM, Oriti (to appear).

Luca Marchetti

$$\rho_j^{\prime\prime} - [(\theta_j^\prime)^2 + m_j^2]\rho_j - \lambda_j \cos \varphi_j \rho_j^\prime = 0 \qquad \rho_j \theta_j^{\prime\prime} + 2\rho_j^\prime \theta_j^\prime - \lambda_j \sin \varphi_j \rho_j^\prime = 0 \qquad \varphi_j = \vartheta_j + (I+1)\theta_j$$

Emergent inflation

dS not an attractor: unstable fixed point!

Ladstätter, LM, Oriti (to appear); Mukhanov 1409.2335.

$$\rho_j^{\prime\prime} - [(\theta_j^\prime)^2 + m_j^2]\rho_j - \lambda_j \cos \varphi_j \rho_j^\prime = 0 \qquad \rho_j \theta_j^{\prime\prime} + 2\rho_j^\prime \theta_j^\prime - \lambda_j \sin \varphi_j \rho_j^\prime = 0 \qquad \varphi_j = \vartheta_j + (I+1)\theta_j$$

Emergent inflation

dS not an attractor: unstable fixed point!

Emergent inflation!

- ▶ Persistent acceleration: $N_{\text{end}} \gg 1$ if $\varphi_{\text{in}} \simeq 0$.
- Almost slow-roll: $\epsilon_{1,3} \ll 1$ during inflation.

Ladstätter, LM, Oriti (to appear); Mukhanov 1409.2335.

Pseudosimplicial: Even Better News

$$\rho_j^{\prime\prime} - [(\theta_j^\prime)^2 + m_j^2]\rho_j - \lambda_j \cos \varphi_j \rho_j^\prime = 0 \qquad \rho_j \theta_j^{\prime\prime} + 2\rho_j^\prime \theta_j^\prime - \lambda_j \sin \varphi_j \rho_j^\prime = 0 \qquad \varphi_j = \vartheta_j + (l+1)\theta_j$$

Emergent inflation

dS not an attractor: unstable fixed point!

Emergent inflation!

- Persistent acceleration: $N_{\text{end}} \gg 1$ if $\varphi_{\text{in}} \simeq 0$.
- Almost slow-roll: $\epsilon_{1,3} \ll 1$ during inflation.
- Preliminary: Post-inflation $\langle w \rangle_{osc} = 1$.

Ladstätter, LM, Oriti (to appear); Mukhanov 1409.2335.

Pseudosimplicial: Even Better News

Emergent inflation

Emergent inflation!

- ▶ Persistent acceleration: $N_{\text{end}} \gg 1$ if $\varphi_{\text{in}} \simeq 0$.
- Almost slow-roll: $\epsilon_{1,3} \ll 1$ during inflation.
- Preliminary: Post-inflation $\langle w \rangle_{osc} = 1$.

Inflaton description

One can construct a φ with potential V(φ) driving the inflationary dynamics ε₁(N).

GFT inflation as emergent SFI!

No analytic form for V(φ), but numerically well approximated by a Mexican-hat potential.

Ladstätter, LM, Oriti (to appear); Mukhanov 1409.2335.

Luca Marchetti

Even Better News

Pseudosimplicial:

- Order 6 GFT interactions generate acceleration, both in pseudo-tensorial/-simplicial models.
 - Asymptotically de Sitter is an attractor, with Λ depending on GFT parameters.
- Emergent description is that of a dynamical dark energy, with w = w(a) depending on the microscopic dynamics.

- Order 6 GFT interactions generate acceleration, both in pseudo-tensorial/-simplicial models.
- Asymptotically de Sitter is an attractor, with Λ depending on GFT parameters.
- Emergent description is that of a dynamical dark energy, with w = w(a) depending on the microscopic dynamics.

Emergent Inflation

Times

Early

- Slight modification of the pseudo-simplicial dynamics leads to instability in de Sitter solution.
- ▶ QG interactions produce emergent inflation: persistent acceleration and graceful exit.
- This emergent inflation is quasi-slow-roll (ϵ_2 large).
- ▶ No inflaton needed! Still, the emergent scenario can be described as single-field inflation.
- In this description, the emergent inflaton potential is well approximated by a Mexican-hat.

- Order 6 GFT interactions generate acceleration, both in pseudo-tensorial/-simplicial models.
- Asymptotically de Sitter is an attractor, with Λ depending on GFT parameters.
- Emergent description is that of a dynamical dark energy, with w = w(a) depending on the Paper out soon, stay tuned! microscopic dynamics.

Emergent Inflation

- Slight modification of the pseudo-simplicial dynamics leads to instability in de Sitter solution.
- QG interactions produce emergent inflation: persistent acceleration and graceful exit.
- This emergent inflation is quasi-slow-roll (ϵ_2 large).
- No inflaton needed! Still, the emergent scenario can be described as single-field inflation.
- In this description, the emergent inflaton potential is well approximated by a Mexican-hat.

- Order 6 GFT interactions generate acceleration, both in pseudo-tensorial/-simplicial models.
- Asymptotically de Sitter is an attractor, with Λ depending on GFT parameters.
- Emergent description is that of a dynamical dark energy, with w = w(a) depending on the Paper out soon, stay tuned! microscopic dynamics.

Emergent Inflation

- Slight modification of the pseudo-simplicial dynamics leads to instability in de Sitter solution.
- QG interactions produce emergent inflation: persistent acceleration and graceful exit.
- This emergent inflation is quasi-slow-roll (ϵ_2 large).
- No inflaton needed! Still, the emergent scenario can be described as single-field inflation.
- In this description, the emergent inflaton potential is well approximated by a Mexican-hat.

Model Building and Phenomenology

- What is the simplicial gravity interpretation of the emergent inflationary models?
- Impact of additional modes in pseudo-tensorial/-simplicial models?
- Evolving dark energy affects H_0 . Can QG alleviate cosmological tensions?
- How do primordial cosmological perturbations emerge from QG?
- In this scenario, what can cosmological power spectra tell us about QG?
- Can a similar mechanism also produce a dark matter component?

Times

Early

Dutlook