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Motivation 
Black holes and the early universe are among the few probes to study the smoking gun 
of quantum gravity. The success of LQC in resolving the singularity issue has inspired 
numerous studies to study the LQG effect on black holes (LQGBH).
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Motivation 
Black holes and the early universe are among the few probes to study the smoking gun 
of quantum gravity. The success of LQC in resolving the singularity issue has inspired 
numerous studies to study the LQG effect on black holes (LQGBH).

Three main interesting open questions

• Singularity resolution 

• The fate of gravitational collapse 

• The loss paradox

A covariant model for a spherically symmetric system has been proposed [Alonso-Bardaji, 
Brizuela’21; Bojowald, Duque’23; Alonso-Bardaji, Brizuela’24; Zhang, Lewandowski, Ma, 
Yang’24].
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Takeaways

(1) The Hawking distribution consistently regains.
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Takeaways

(1) The Hawking distribution consistently regains.

(2) The universality of black hole absorption rates 
is preserved.

(3) After the evaporation slows, gravitational 
instability emerges and prevails, precluding 
thermal stabilization.

(4) The mass hierarchy favours a black to white 
hole transition. 
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Outline 

(1) Framework,  vacuum solutions, and scalar !eld coupling                     

(2) The black hole evaporation

(3) Summary and outlook
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Framework, vacuum 
solutions, and scalar 

field coupling
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Geometry from Phase Space 
HDA

{Hx[Nx
1], Hx[Nx

2]} = Hx [Nx
1 (Nx

2)′ − Nx
2 (Nx

1)′ ]
{H[N1], Hx[Nx

2]} = − H[Nx
2 N′ 1]

{H[N1], H[N2]} = Hx [f(EI, KI)(N1N′ 2 − N2N′ 1)]
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Periodic and non-periodic phase space 
Starting with the most general ansatz for the Hamiltonian constraint containing up to second-order 
derivatives and quadratic first-order derivative terms [Alonso-Bardaji and Brizuela’22; Bojowald 
and Duque’24]


 


One then required: the hypersurface deformation algebra and the strong covariance condition 
maintained.


H̃ = a0 + ((Ex)′ )2axx + ((Eφ)′ )2aφφ + (Ex)′ (Eφ)′ axφ + (Ex)′ ′ a2 + (K′ φ)2bφφ + (Kφ)′ ′ b2 + (Ex)′ K′ φcxφ + (Eφ)′ K′ φcφφ + (Eφ)′ ′ c2
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Canonically related
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Vacuum Schwarzschild solution  Λ = 0
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Global structure 
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ds2 = − (1 − 2M
x ) dt2

α2χ2 + dx2

χ2 (1 − 2M
x ) (1 + λ2(x)(1 − 2M

x ))
+ x2dΩ2



1. Reflection symmetry surface
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− Λ
3 Ex) = 0
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Recovering the flat time attained by χ2 = α−2 ≡ χ2
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∞)−1
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Global structure 

𝑥 = 𝑥𝜇
(−)

𝑥 = 𝑥𝜇
(−)

𝐸𝑖𝑛

𝐸𝑜𝑢𝑡

𝐼𝑖𝑛

𝐼𝑜𝑢𝑡

𝐸+

𝐸−

𝑥 = 𝑥𝜇
(−)

𝑥 = 𝑥𝜇
(+)

𝑥 = 𝑥𝜇
(+)

𝐶𝑖𝑛

𝑥 = 𝑥𝜇
(+)

𝐶𝑜𝑢𝑡

𝑥 = 𝑥𝜇
(+)

𝑥 = 𝑥𝜇
(+)

𝑥 = 𝑥𝜇
(+)

Large   effectx

dS-Schwarzschild vacuum with  λ(x) = λ̃
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𝑥𝑜𝑢𝑡 = ∞

𝑥 = ∞𝑥 = ∞

𝑥 = ∞
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No IR effect

dS-Schwarzschild vacuum with  λ(x) = Δ̃
x2
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Covariance coupling
Hamiltonian constraint of the gravitational degrees of freedom with scalar matter  

                                         H̃ = H̃grav + H̃ϕ

The covariance allowed for a variety of coupling schemes [Bojowald and Duque’24]. Two interesting scenarios:

 Minimally coupled scalar field (low-curvature)

H̃ = Ex q̃xx
P2

ϕ

2 (Ex)2 q̃xx
+ (ϕ′ )2

2q̃xx
+ V(ϕ)

 Non-minimally coupled scalar (high-curvature)

H̃ = χ
Ex

2
P2

ϕ

EφEx 1 + λ2(Ex) (Ex)′ 

2Eφ

2

cos2(λKφ) + Ex

Eφ (ϕ′ )2 + 2EφV(ϕ)
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The black hole 
evaporation

 11



Near horizon expansion
Near-horizon , the line-element can be cast into Rindler line-element x = 2M (1 + (χ0ζ/4M)2)

                             Near horizon temperature  ds2 = − ζ2dτ2 + dζ2 T = χ0
4π

1
2Mx (1 − 2M/x)
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Near horizon expansion
Near-horizon , the line-element can be cast into Rindler line-element x = 2M (1 + (χ0ζ/4M)2)

                             Near horizon temperature  ds2 = − ζ2dτ2 + dζ2 T = χ0
4π

1
2Mx (1 − 2M/x)

The temperature at arbitrary  x̄ > x

T(x̄) = χ0
8πM (1 − 2M

x̄ )
−1/2

The temperature measured by the asymptotic observer

                      T(∞) = 1
8πM

χ0 = χ0TH

Hawking temperature 
recovered in the scale-
dependent holonomy
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Black hole entropy 

A geometric approach

Brown-York quasi-local energy 

EBY(x) = xχ0 1 + λ2 − 1 − 2M
x

1 + λ2 (1 − 2M
x )
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Parikh-Wilczek formalism
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The tunnelling amplitude is defined as , where:Γ ≃ exp(−ImS)

S = ∫
M−ω

M
(−dω′ )∫

2(M − ω)+ϵ

2(M − ω)−ϵ

dx

(1 − 2(M − ω′ )
x )

The tunnelling rate  Boltzmann factor∼

Γ ≃ exp (−ω8π (M − ω
2 )) → TH = 1

8πM

The black hole entropy measured by an asymptotic observer can be read from the 
tunnelling rate  which leads toΓ ≃ exp (ΔSBH)

SBH = 4πM2
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Parikh-Wilczek formalism

 15The University of Edinburgh Idrus Husin Belfaqih



Parikh-Wilczek formalism

 −ω

 15The University of Edinburgh Idrus Husin Belfaqih



Parikh-Wilczek formalism

 −ω

 +ω

Important: 
The ADM mass   is not the 

same as the BH mass parameter  .
MADM

M

 15The University of Edinburgh Idrus Husin Belfaqih



Parikh-Wilczek formalism

 −ω

 +ω

Important: 
The ADM mass   is not the 

same as the BH mass parameter  .
MADM

M

As the particle carries away the energy  , reducing the black hole mass parameter  ω M

   
1 + 2λ2

∞
1 + λ2∞

M − ω̃ = 1 + 2λ2
∞

1 + λ2∞ (M − 1 + λ2
∞

1 + 2λ2∞
ω̃) =: 1 + 2λ2

∞
1 + λ2∞

(M − ω)

 15The University of Edinburgh Idrus Husin Belfaqih



Parikh-Wilczek formalism

 −ω

 +ω

Important: 
The ADM mass   is not the 

same as the BH mass parameter  .
MADM

M

As the particle carries away the energy  , reducing the black hole mass parameter  ω M
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1 + λ2∞ (M − 1 + λ2
∞

1 + 2λ2∞
ω̃) =: 1 + 2λ2

∞
1 + λ2∞

(M − ω)

Similar to the classical computation, the tunnelling amplitude is defined as , where 
now:

Γ ≃ exp(−ImS)

S = 1 + 2λ2
∞

1 + λ2∞
∫

M−ω

M ∫
2(M − ω)+ϵ

2(M − ω)−ϵ

dx

(1 − 2(M − ω′ )
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(−dω′ )
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Black-hole evaporation

Grey-body 
factor



Grey-body factor
Low-frequency modes                [Page’76; Unruh’76; Harmark, 
Natario, Schiappa’10, etc]

ω ≪ T∞ Mω ≪ 1
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The grey-body factor:

Tl(ω) = Jℐ+

JH−
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The black hole energy emission can be computed from the 
expectation value of the momentum energy tensor  :


 

⟨Tx
t ⟩

dM
dt

= − 1
2π ∫

∞

0
dω

ωT0(ω)
exp(8πMωχ−1

0 ) − 1

Transmission coefficient


  

Cross section


  

T0(ω) = 16M2ω2

[(1 − 4M2ω2)2+( Δ
12M2 )

2
(Mω)2 (1 − 3Δ

160M2 )
2]

σ = AH

 λ(x) = Δ/x2
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The holonomy correction reduces the absorption 
rates.

The classical limit is recovered when .Δ → 0



1. Quantum fluctuation dominates → Mf ≈ 3.8 Δ

 [Parikh & Pereira’24]

2. Thermal stabilization → Mr ≈ 0.15 Δ

    [IHB, Bojowald, Brahma, & Duque’25]

3. Gravitational instability → Mc ≈ 0.57 Δ

 [Bojowald, Duque, & Shankaranarayanan’25]

 19The University of Edinburgh Idrus Husin Belfaqih

Black to white hole transition

Mechanism for Black 
to White Hole 

transition



1. Quantum fluctuation dominates → Mf ≈ 3.8 Δ

 [Parikh & Pereira’24]

2. Thermal stabilization → Mr ≈ 0.15 Δ

    [IHB, Bojowald, Brahma, & Duque’25]

3. Gravitational instability → Mc ≈ 0.57 Δ

 [Bojowald, Duque, & Shankaranarayanan’25]

 19The University of Edinburgh Idrus Husin Belfaqih

Black to white hole transition

 Mf ≈ 3.8 Δ Mc ≈ 0.57 Δ

 Mr ≈ 0.15 Δ

Mechanism for Black 
to White Hole 

transition



1. Quantum fluctuation dominates → Mf ≈ 3.8 Δ

 [Parikh & Pereira’24]

2. Thermal stabilization → Mr ≈ 0.15 Δ

    [IHB, Bojowald, Brahma, & Duque’25]

3. Gravitational instability → Mc ≈ 0.57 Δ

 [Bojowald, Duque, & Shankaranarayanan’25]

 19The University of Edinburgh Idrus Husin Belfaqih

Black to white hole transition

Thermal stabilization is preceded by gravitational destabilization   The repulsive QG effect
→

 Mf ≈ 3.8 Δ Mc ≈ 0.57 Δ

 Mr ≈ 0.15 Δ

Mechanism for Black 
to White Hole 

transition



Conclusion
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Summary and outlook
Summary

Consistent (anomaly-free and covariance) vacuum solution for arbitrary holonomy function .λ(x)

We regained the thermal Hasking distribution and universality of black hole absorption rates to leading order.

The Hawking temperature is recovered only under the condition that  decreases monotonically.λ(x)

The Brown–York quasi-local formalism and the tunnelling approach yield consistent results for black hole entropy.
The black hole evaporation process slows down due to the holonomy correction. The gravitational instability kicks in 
before reaching a remnant stage, favouring the black to white hole transition according to the hierarchy  .Mf > Mc > Mr

In progress (coming soon)

Include backreaction effects consistently and more quantitatively.

Deformed Minkowski spacetime.              Maximal acceleration 
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