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● Black hole spacetimes are a challenge for classical, semiclassical, and 
quantum gravity.

● PERTURBATIONS of black holes are crucial to analyze their stability.

● They also have applications in astrophysics. For instance, they 
describe some regimes in the evolution of a black hole merger.

● This connects with the emission 
of gravitational waves, a reason 
explaining the increasing attention  
paid  to this topic.

● The ringdown of perturbed black 
hole is dominated by quasinormal 
modes.
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● Identification of points of the original
and the perturbed manifold introduce
some gauge freedom.

● Only perturbative quantities invariant 
under this freedom are physical. 

● These are the PERTURBATIVE 
GAUGE INVARIANTS. 

● At first order, they are linear in the 
perturbations and can be multiplied
by any background-dependent factor.

● They satisfy second-order differential equations, defined in the set of 
orbits of spherical symmetry. Quasinormal modes solve these 
equations with outgoing boundary conditions. 

Introduction



  

Introduction

● Most of the perturbative studies have been carried out in the 
Lagrangian formalism.

● A HAMILTONIAN formulation for nonrotating black holes -as well as a 
higher-order perturbative formalism- was developed by J.M. Martín-
García & D. Brizuela (and G.A.M.M.) in the 90s. 

● This formulation employs spherical symmetry as a key ingredient. It 
splits the 4-dimensional manifold into two 2-dimensional ones.

● Perturbative gauge invariants are easily characterized by commuting 
with the generators of perturbative spacetime diffeomorphisms.

● The Hamiltonian formulation is especially suitable for the transition to 
the quantum theory.

● However, the radial dependence highly complicates the analysis.



  

Introduction

● There exist an intriguing relation between different perturbative gauge 
invariants, given by DARBOUX TRANSFORMATIONS.

● Suppose that   satisfies a wave equation in two dimensions for a 
potential       which depends on the angular-momentum number    

● Consider the transformation to                  where the acute stands for 
the derivative wrt. a tortoise “radial” coordinate, and    satisfies the 
Ricatti equation                           with     a constant.

● Then      is a solution to the equation for the new potential  

● Given a solution                              define                         with            

Then, the old and new potentials admit isoespectral  solutions (with 
the same “frequency”), related by  

φ

vl , l .

Ψ=φ́−g lφ ,
g l

−ǵ l+g l
2+v l=c , c

Ψ V l=v l+2 ǵ l .

φ0−v l φ0=−ω0
2φ0 ,́́ g l=(ln (φ0))́ , c=ω0

2 .

Ψ=[φ́φ0−φφ́0]/φ0 .



  

Introduction

● Darboux transformations suggest a higher symmetry. They have been 
related to a KdV system with a bi-Hamiltonian structure.

● The complications with the radial dependence disappear in the interior 
region of the black hole, where it becomes a time dependence.

● This interior is isometric to a Kantowski-Sachs cosmology.

● Can the Hamiltonian formulation 
of the perturbations be further 
developed in this interior? Yes (A. 
Mínguez-Sánchez & G.A.M.M.). 

● Can we use it to understand 
Darboux transformations? 

● And quantum mechanically?. 



  



  

Background

● The metric in the interior region can be written in the form

  
The chosen metric functions are in fact triad variables. 

● The geometry has two canonical pairs  of degrees of freedom, with 
extrinsic-curvature variables such that 

● This KS background is subject ONLY to the Hamiltonian constraint

 

The Omega-operators are generators of dilations.

ds2= pb
2(τ)(− N 2(τ)∣pc(τ)∣d τ

2+
1

∣pc(τ)∣
d x2)+∣pc(τ)∣(d θ

2+sin2θd ϕ2) .

{b , pb}=1, {c , pc}=2 .

N H KS=−
N
2
(Ωb

2+2ΩbΩc+ pb
2) , Ω j= j p j , j=b , c.



  

Background

● We consider compact sections with the topology of             
Then, zero-modes are isolated and can be treated exactly.

● We expand our perturbations in REAL spherical harmonics and 
Fourier modes.
  

● Spherical harmonics split in polar and axial depending on their 
behavior under parity. 

● A polar harmonic of eigenvalue               for the Laplacian on       has 
parity eigenvalue equal to            Scalar harmonics        are polar.   

● We use a real Regge-Wheeler-Zerilli basis of harmonics. 

● Using capital Latin letters for    -indices, we decompose any symmetric 
tensor as 

 

            

S1×S 2 .

−l (l+1) S 2

(−1)l . Y l
m

S 2

T abdx
adxb=T xx dx

2+2T xAdx dx
A+T AB dx

AdxB .



  

Perturbations

● For scalars on         we have 

● For covectors,   
  

where we include polar and axial contributions. 

Using the metric       on      and its covariant derivative, we have

which are orthonormalized to 

● Finally, for tensors
 

with

These tensor harmonics are orthonormalized to   

 

            

ζ(θ ,ϕ)=∑ ζ l
mY l

m .S 2 ,

wA(θ ,ϕ)=∑ (W l
mZ l

m
A+w l

m X l
m
A) ,

γAB S 2

Z l
m
A=Y l

m
:A , X l

m
A=ϵAB γ

BCY l
m

:C , l≥1.

l (l+1).

T AB(θ ,ϕ)=∑ T̃ l
mγABY l

m+∑ (T l
m Z l

m
AB+t l

m X l
m
AB ) ,

X l
m
AB=

1
2
(X l

m
A:B+X l

m
B : A) , Z l

m
AB=Y l

m
:AB+

l (l+1)
2

γABY l
m , l≥2 .

l (l+1)(l+2)/2 .



  

Perturbations

● We choose real spherical harmonics,

         

● Similarly, for the Fourier expansion on        we employ real modes,
  

● For simplicity, we will restrict ourselves to AXIAL perturbations with        
The study of polar perturbations can be carried out along similar lines.

● There are no scalar axial perturbations. And we will see that axial 
vector pertubations are pure gauge in our system.   

● We might include a perturbative scalar field  in the analysis (with no 
zero mode). But it would only contribute with polar perturbations.

 

            

Y l
m
→ {Y l

m , m=0 ;
(−1)m

√2
(Y l

m
+Y l

m✶
) , m>0 ;

(−1)m

i √2
(Y l

∣m∣
−Y l

∣m∣✶
) , m<0}.

S1 ,

W n ,λ→{W 0=1 ; W n ,+=√2 cosωn x , W n ,−=√2 sinωn x , ωn=2π n , n≥1}.

l≥2 .



  

Perturbations

● Calling                        we can expand the axial pertubations of the 
spatial metric, its momentum, and the shift vector as  

● At second order, the contribution of the perturbations to the action has
the form

     

{ν}={n ,λ , l ,m},

Δ hab dx
a dxb=−2∑ h1

ν(t) X l
m
A(θ ,ϕ)W n ,λ( x)dx dx

A+∑ h2
ν(t) X l

m
AB(θ ,ϕ)W n ,λ(x)dx

AdxB ,

Δ [ pab

√h
dxa dxb ]=− 4π pb

2

V
∑

p1
ν
(t )

l (l+1)
X l

m
A(θ ,ϕ)W n ,λ (x)dx dx

A

+
8π pc

2

V ∑
p2
ν
(t )

l (l+1)(l+2)
X l

m
AB(θ ,ϕ)W n ,λ (x)dx

AdxB ,

N adx
a
=−16π∑ h0

ν
(t )X l

m
A(θ ,ϕ)W n ,λ (x)dx

A .

1
16π∫ d τ ∑ ( ḣ1

ν p1
ν+ḣ2

ν p2
ν−h0

νC ν
ax−N H ν

ax ) .

Perturbative diff. constraints Hamiltonian constraint



  



  

Gauge invariants

● Considering the background as fixed, we can perform a linear 
canonical transformation in the perturbations so that they are 
described by gauge invariant canonical pairs, and by the perturbative 
constraints and variables canonically conjugated to them,   

with generating function

● The perturbative term in the Hamiltonian changes by the background 
evolution of this generating function, given by its Poisson bracket with 
the background Hamiltonian.       

{h1
ν , p1

ν , h2
ν , p2

ν
}→ {Q̃1

ν , P̃1
ν , Q̃2

ν , P̃2
ν
=−

1
2
C ν

ax} ,

F ν
=h1

νQ̃1
ν
+h2

ν P̃2
ν
−
λωn

2
h2
νQ̃1

ν
+

(l+2)!

4 (l−2)! pc
2 (Ωb+Ωc)(h2

ν
)

2

−
2 l (l+1)

pb
2 Ωb (ωn

2

4
(h2
ν)2+λωn h1

νh2
ν) .



  

● The perturbative contribution to the action can be written   

where the new lapse includes quadratic perturbative terms and

● We can now eliminate the cross-terms in the perturbative contribution 
to the Hamiltonian and introduce the so-called Gerlach-Sengupta 
gauge invariant, generalized to any background and evaluated in the 
interior.

     

∫d τ {(N−Ñ )H KS+
1

16π
∑ ( ˙̃Q1

ν P̃1
ν+ ˙̃Q2

ν P̃2
ν)+ 1

8π
∑ h̃0

ν P̃2
ν−Ñ∑ H̃ ν

ax} ,

H̃ ν
ax=

pb
2 (Q̃1

ν)2

2 l (l+1)
+
l (l+1)

2 pb
2 [8Ωb

2+8ΩbΩc+4 pb
2+(l+2)(l−1) pb

2 ]( P̃1
ν)2

+
(l−2)!

2(l+2)!
ωn

2 pc
2 [Q̃1

ν+
4 l (l+1)

pb
2

Ωb P̃1
ν]

2

+2Ωb Q̃1
ν P̃1

ν .

Gauge invariants



  

Gerlach-Sengupta

● This gauge invariant and its momentum are given by   

● After this canonical transformation, the perturbative term of the 
Hamiltonian adopts a simple form  (easy to quantize!),

● In the 2-dimensional set of spherical orbits, the generalized Gerlach-
Sengupta master variable for any background is
     

QGS
ν
=−√ (l−2)!

(l+2)! [Q̃1
ν
+

4 l (l+1)

pb
2 Ωb P̃1

ν ] ,
PGS
ν
=−√ (l+2)!

(l−2)!
P̃1
ν
+2Ωb√ (l−2)!

(l+2)! [Q̃1
ν
+4l (l+1)

1

pb
2Ωb P̃1

ν ] .

H ν
ax , (GS )=

1
2
(PGS

ν ) 2+
Ṽ
2
(QGS

ν ) 2 , Ṽ=ωn
2 pc

2+l (l+1) pb
2−4(Ωb

2+ pb
2).

QGS
lm (τ , x)=∑n ,λ

QGS
ν (τ)W n ,λ( x).



  

Master equation

● The Gerlach-Sengupta modes satisfy   

In terms of the Laplacian of the 2-dimensional metric induced on the 
set of spherical orbits and using the Gerlach-Sengupta master 
variable, this equation can be rewritten as

● Another useful gauge invariant is the Cunningham-Price-Moncrief 
invariant,

or, in two dimensions, the corresponding master variable.    

[((N−1
∂τ)

2
+ωn

2 pc
2)+(l (l+1) pb

2
−4Ωb

2
−4 pb

2) ]QGS
ν
=0.

QCPM
ν
=2√∣pc∣ √ (l−2)!

(l+2)!
QGS
ν ,

[□2+
∣pc∣
pb

2 (l (l+1) pb
2
−4Ωb

2
−4 pb

2) ]QGS
lm
(τ , x)=0.



  



  

Master equation

● In the Gerlach-Sengupta Hamiltonian, the contribution of      to the 
potential      is not constant, but appears multiplied by 

● We can render it constant by the canonical transformation  

where         is the background Hamiltonian.

● The new perturbative contribution to the Hamiltonian constraint is 

● This leads to  

For Schwarzschild, this is the Regge-Wheeler master equation.
     

Qν=√∣pc∣QGS
ν , Pν=√∣pc∣PGS

ν −
1
2

{∣pc∣, H KS }

∣pc∣
QGS
ν ,

H ν
ax
[N ]=

N ∣pc∣
2 [(Pν)2+(ωn

2
−

1

pc
2 [3 (Ωb

2
+ pb

2 )−l (l+1) pb
2 ])(Qν)

2 ] .

ωn
2

pc
2 .Ṽ

H KS

[□2−( l (l+1)

∣pc∣
−3
Ωb

2
+ pb

2

pb
2 ∣pc∣ )]Qν=0.



  

● Defining                           the equation can be written 

 
● For the time      the perturbative Hamiltonian 

has the form 

and the gauge invariant satisfies                                    where 

● RECALL: 
A Darboux transformation                           leads to the new equation

                                  with                       if    

 

Darboux

H̄ ν
ax=

1
2
P ν

2+
1
2
(ωn

2 +vl )Q ν
2 ,

τ̄ ,

Qν+(ωn
2+vl )Qν=0 ,

́́
f́ =∂ τ̄ f .

Qν=
́̄Qν+g l Q̄ν

(∂ τ̄2 +ωn
2
−

1

pc
2 [3(Ωb

2
+ pb

2)−l (l+1) pb
2]) Qν=0.

d τ̄=N∣pc∣d τ ,

Q̄ν+(ωn
2+V l)Q̄ν=0 , V l=v l+2 ǵ l , 

́́ ǵ l+g l
2+v l=cl .



  

Canonical Darboux

● We want to show that Darboux transformations are just canonical 
transformations that respect the structure of the Hamiltonian!

●  Consider a generic canonical transformation,

with                        (canonical!)

● The coefficients of the transformation are background (and thus time-) 
dependent. We assume         so that the transformation is not just a 
simple redefinition of the gauge invariant.  
 

● With this transformation, we get a new perturbative contribution to the 
Hamiltonian. We ask that the momentum-configuration term vanish 
and the coefficient of the squared momentum be one half, as before 
the transformation!  

    

 

B≠0

Qν=AQ̄ν+B P̄ν , P ν=C Q̄ ν+D P̄ν ,

́́

AD−BC=1 .



  

● Canonical transformation:

with                        (canonical!)

● Hamiltonian:                                                

It is not difficult to see that this requires

                   (No cross term!)
 
                                    with                     (Momentum coeff.)

● If we do not want that the new potential depends on        we must take 

                       Then,        

The canonical transformation is totally fixed, given     and a solution to 
the Ricatti equation!
    

 

Canonical Darboux

ǵ +g2+(ωn
2+v l)=

1

B2
, g=

D
B

.

Qν=AQ̄ν+B P̄ν , P ν=C Q̄ ν+D P̄ν ,

C=
AD−1
B

.

A=D−B́ .

ωn ,

B−2=ωn
2 +cl .

H̄ ν
ax=

1
2
P̄ ν

2+
1
2
(ωn

2 +V l)Q̄ν
2 .

A=D .

cl



  

● Thus, Darboux transformations are canonical transformations (in the 
interior of the black hole) that respect the canonical form of the 
Hamiltonian for the perturbations. They are given by

where 

● The new gauge invariant satisfies                                                   

    

 

Canonical Darboux

ǵ l +g l
2+v l=cl .

Qν=
g l

√ωn
2
+cl

Q̄ν+
1

√ωn
2
+c l

P̄ ν ,

Pν=( g l
2

√ωn
2
+cl

−√ωn
2
+cl )Q̄ν+

g l

√ωn
2
+c l

P̄ ν ,

Q̄ν+(ωn
2+vl+2 ǵ l)Q̄ν=0 .

́́



  

● We have developed a Hamiltonian 
formalism for perturbations of non-
rotating black holes, adapted to their interior. 

● We have identified standard (axial) gauge invariants/master variables. 
Their dynamics involve quasinormal modes, relevant during ringdown.

● Although derived from General Relativity, all relations are expressed 
in terms of the background, and can be extended to effective ones. 

● The formalism allows for an almost direct hybrid LQC quantization!

● Darboux transformations become canonical transformations! 

● We can now investigate whether isospectroscopy is realized as a true 
unitary transformation in quantum field theory (including all   's). l
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