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Introduction

e Black hole spacetimes are a challenge for classical, semiclassical, and
quantum gravity.

e PERTURBATIONS of black holes are crucial to analyze their stability.

e They also have applications in astrophysics. For instance, they
describe some regimes in the evolution of a black hole merger.

e This connects with the emission — Merger Ringdown

of gravitational waves, a reason Ay "
explaining the increasing attention . @ \_~ 6
A K =~

paid to this topic.

e The ringdown of perturbed black ' -

hole is dominated by quasinormal T Time
modes. Amplitude of gravitational waves




Introduction

¢ |dentification of points of the original
and the perturbed manifold introduce
some gauge freedom.

e Only perturbative quantities invariant
under this freedom are physical.

e These are the PERTURBATIVE
GAUGE INVARIANTS.

e At first order, they are linear in the
perturbations and can be multiplied
by any background-dependent factor.

e They satisfy second-order differential equations, defined in the set of
orbits of spherical symmetry. Quasinormal modes solve these
equations with outgoing boundary conditions.



Introduction

e Most of the perturbative studies have been carried out in the
Lagrangian formalism.

e A HAMILTONIAN formulation for nonrotating black holes -as well as a
higher-order perturbative formalism- was developed by J.M. Martin-
Garcia & D. Brizuela (and G.A.M.M.) in the 90s.

e This formulation employs spherical symmetry as a key ingredient. It
splits the 4-dimensional manifold into two 2-dimensional ones.

e Perturbative gauge invariants are easily characterized by commuting
with the generators of perturbative spacetime diffeomorphisms.

e The Hamiltonian formulation is especially suitable for the transition to
the quantum theory.

e However, the radial dependence highly complicates the analysis.



e There exist an intriguing relation between different perturbative gauge
invariants, given by DARBOUX TRANSFORMATIONS.

e Suppose that ¢ satisfies a wave equation in two dimensions for a
potential v,, which depends on the angular-momentum number /.

e Consider the transformation to ¥Y=¢—g,9, where the acute stands for
the derivative wrt. a tortoise “radial” coordinate, and g, satisfies the
Ricatti equation —g,+g;+v,=c, with ¢ a constant.

e Then VW is a solution to the equation for the new potential V' ,=v,+2¢,.

e Given a solution ¢,—v,p,=—w; ¢,, define g,=(In(wp,)), with c=w;.

Then, the old and new potentials admit isoespectral solutions (with
the same “frequency”), related by W=|¢pg,—9¢,]/@,.



Introduction

e Darboux transformations suggest a higher symmetry. They have been
related to a KdV system with a bi-Hamiltonian structure.

e The complications with the radial dependence disappear in the interior
region of the black hole, where it becomes a time dependence.

e This interior is isometric to a Kantowski-Sachs cosmology.

e Can the Hamiltonian formulation
of the perturbations be further
developed in this interior? Yes (A.
Minguez-Sanchez & G.A.M.M.).

e Can we use it to understand
Darboux transformations?

¢ And quantum mechanically?.







Background

e The metric in the interior region can be written in the form

ds’=p.(t) — N*(1) pc(r)‘drz—l— 1( )|dx2 + pC(T)‘((,z’Gz—l—sian)dq)2 :
P\T

The chosen metric functions are in fact triad variables.

e The geometry has two canonical pairs of degrees of freedom, with
extrinsic-curvature variables such that {5, p,}=1, {c, p.}]=2.

e This KS background is subject ONLY to the Hamiltonian constraint

MHKsz_% Q+20,04pl), Q=jp, Jj=b.c

The Omega-operators are generators of dilations.
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We consider compact sections with the topology of S'xS>.
Then, zero-modes are isolated and can be treated exactly.

We expand our perturbations in REAL spherical harmonics and
Fourier modes.

Spherical harmonics split in polar and axial depending on their
behavior under parity.

A polar harmonic of eigenvalue —I(/+1) for the Laplacian on $*> has
parity eigenvalue equal to (—1). Scalar harmonics Y] are polar.

We use a real Regge-Wheeler-Zerilli basis of harmonics.

Using capital Latin letters for S*-indices, we decompose any symmetric

tensor as T . dx“dx"=T _dx’+2T ,dxdx’+T ,dx" dx”.



e Forscalarson S°, we have €(0,¢)=)_ Ty}

e [or covectors, WA(9,¢)=Z(W Z) +w XzA)

where we include polar and axial contributions.

Using the metric Y.z on S* and its covariant derivative, we have
ZU =Y 4 X’ZWAZGABYBCY;W:C’ [=1.

which are orthonormalized to /(/+1).

Finally, for tensors
T ,5(0,0)= ZT Y Y/ +Z(T Z; 5+t XZAB)

. w1 [(1+1)
with XZAB—2 5

These tensor harmonics are orthonormalized to /(/+1)(/+2)/2.

(X;nA:B_'_XIZnB:A)’ Z] =Y apt YaugY/, [=2.



e \We choose real spherical harmonics,

m _1 " m mx* 1m m m|*
Y”, m=0; (J; (Y'+Y™), m>0; <le (Y=Y m<o0].

Similarly, for the Fourier expansion on S', we employ real modes,

Y, —

W, = We=1; W

n,

n,+:\/2005(0nx: Wn,_=\/231n(x)nx, mn:2nn,n21}.

For simplicity, we will restrict ourselves to AXIAL perturbations with /=2.
The study of polar perturbations can be carried out along similar lines.

There are no scalar axial perturbations. And we will see that axial
vector pertubations are pure gauge in our system.

We might include a perturbative scalar field in the analysis (with no
zero mode). But it would only contribute with polar perturbations.



e Calling {v}={n,\,I,m}], we can expand the axial pertubations of the
spatial metric, its momentum, and the shift vector as

Ah,dxdx’==2) h(t)X],(0,0)W, k(x)dx dx'+) () X7 (0,0)W, , (x)dx"dx’,

pab

\/—d “dx”

4Jtp
bz l+1 X,A 6 q>) (x)dxdxA

X7 5(0,0)W, ; (x)dx"dx”,

e At second order, the contribution of the perturbations to the action has
the form .
16T[de (h1p1+h2p2_ho§3x_N];13x)~

Perturbative diff. constraints Hamiltonian constraint
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e Considering the background as fixed, we can perform a linear
canonical transformation in the perturbations so that they are
described by gauge invariant canonical pairs, and by the perturbative
constraints and variables canonically conjugated to them,

1

ki, Py by, pa) = QY,PY,QZ,PS?—C?}’

2
with generating function
vV__ 1 VAV v HV }\(Dn v AV (Z"‘Z)/ v\2
F _h1Q1+h2P2 2 hZQI+4<l_2>/pi(9b+gc><h2>
2
J 26, SRS+, B A
Po

The perturbative term in the Hamiltonian changes by the background
evolution of this generating function, given by its Poisson bracket with
the background Hamiltonian.



e The perturbative contribution to the action can be written

L
167

fd'c

where the new lapse includes quadratic perturbative terms and

PO 1(1+1)
C20(I+1) 2p?

~ v BV v v 1 7V PV N [y ax
(M_M>HKS+ Z(Q1P1+Q2P2)+gzhoP2_Nsz ’

ae 8Q+80Q,Q +4 pi+(1+2)(1-1) p;|(P})

2

-2/ ~ o
(1-2)! 5 41(1+1) 120,07 P

p Q;/-I_ 2 Qbi);/
Pp

e \We can now eliminate the cross-terms in the perturbative contribution
to the Hamiltonian and introduce the so-called Gerlach-Sengupta
gauge invariant, generalized to any background and evaluated in the
interior.




e This gauge invariant and its momentum are given by

v (l_z)./ >~V 4l<l+1> ~

—— Q,P
v (l+2>/~\/ \/(1_2)/ >V 1 NV
—_ +1)—Q, P, |.
P \/(1_2)!}714—2(213 I2); O +41(/ )pZ P

e After this canonical transformation, the perturbative term of the
Hamiltonian adopts a simple form (easy to quantize!),

e =P L (0L, =0l piei(41) pi-4 (954 ).

e |n the 2-dimensional set of spherical orbits, the generalized Gerlach-
Sengupta master variable for any background is

QZS(T’ X)ZZM Ocs(T) Wn,x(x)-



e The Gerlach-Sengupta modes satisfy

(V0,202 2] +[1(1+1) pi—a =4 pi] | Ot =0,

In terms of the Laplacian of the 2-dimensional metric induced on the
set of spherical orbits and using the Gerlach-Sengupta master
variable, this equation can be rewritten as

A+ 1(14+1) pi—49—4 pi || 01, x) =0,

Py

e Another useful gauge invariant is the Cunningham-Price-Moncrief

(1-2)!

QCPM <l+2)

Qs

invariant, J

or, in two dimensions, the corresponding master variable.






In the Gerlach-Sengupta Hamiltonian, the contrlbutlon of o’ to the
potential V' is not constant, but appears multiplied by p..

We can render it constant by the canonical transformation

— , H g
0,=v|p. {pc }

% %
QGS’ QGS’

GS

where H . is the background Hamiltonian.
The new perturbative contribution to the Hamiltonian constraint is

AL (QVV}.

2

HUIN|=

(P,)+| ] —%[3(Qi+pi)—l<l—l—l)p§]

C

[{1+1) Dt pi
P. p.

This leads to |0, — 0,=0.

2
Py

For Schwarzschild, this is the Regge-Wheeler master equation.



e Defining dT=N|p, |d 1, the equation can be written

P

Q,=0.

2

& +o? —5[3(Q2+ p|-1(1+1)
P

e Forthe time T, the perturbative Hamiltonian
has the form

_ax_l 2 l 2 2
Hv _2PV+2((DI1 +VZ>QV’

and the gauge invariant satisfies Q,+(w. +v,)0,=0, where fzc’?ff.

e RECALL: |
A Darboux transformation Q,=0,+g,0, leads to the new equation

QV_I_((Di_l_VZ)Qv:O’ with V,=v,+2g,, if g’l—l—glz—l—vl:cl.




We want to show that Darboux transformations are just canonical
transformations that respect the structure of the Hamiltonian!

Consider a generic canonical transformation,

0,=40,+BP,, P,=CQO,+DP,, }
with 4AD—BC=1. (canonical!)

The coefficients of the transformation are background (and thus time-)
dependent. We assume B#0 so that the transformation is not just a
simple redefinition of the gauge invariant.

With this transformation, we get a new perturbative contribution to the
Hamiltonian. We ask that the momentum-configuration term vanish
and the coefficient of the squared momentum be one half, as before
the transformation!



e (Canonical transformation:
0,=A0,+BP,, P=CO,+DP,,

with c=4P—1

(canonical!)
e Hamiltonian: Flﬁxzéi’ﬂ%(ooi +V,)0:.
It is not difficult to see that this requires

A=D-B. (No cross term!)

, 2 2 | _ D
gtg +((Dn+vz)=E, with &= (Momentum coeff.)

e |f we do not want that the new potential depends on ®,, we must take
B?=w. +c,. Then, A=D.

The canonical transformation is totally fixed, given ¢, and a solution to
the Ricatti equation!



e Thus, Darboux transformations are canonical transformations (in the
interior of the black hole) that respect the canonical form of the
Hamiltonian for the perturbations. They are given by

g ~ 1 =
Q v \/ 2 QV + \/ 2 P v “For darkness restores what the light c::-.mmr repull::' P
(Dn —|— CZ mn —|— Cl Joseph Brodsky, “On Love
g g
_ / \/ ~ ! -
PV - 2 (D + Cl QV + 2 PV k)
W, +¢ W, +¢

’ 2
where g, tg,+v,=c¢,.

e The new gauge invariant satisfies

Qv_l_(wi +Vl+2gl)Qv:O‘




We have developed a Hamiltonian
formalism for perturbations of non-
rotating black holes, adapted to their interior.

We have identified standard (axial) gauge invariants/master variables.
Their dynamicsinvolve quasinormal modes, relevant during ringdown.

Although derived from General Relativity, all relations are expressed
in terms of the background, and can be extended to effective ones.

The formalism allows for an almost direct hybrid LQC quantization!
Darboux transformations become canonical transformations!

We can now investigate whether isospectroscopy is realized as a true
unitary transformation in quantum field theory (including all /'s).
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