Preserving Gauge Symmetries in Cosmology via Loop Quantum Gravity

Matteo Bruno

[gr-qc] 2401.12927 [gr-qc] 2405.03019

Erlangen, 2025

Fiber bundle structure of Ashtekar variables A Yang-Mills approach

The natural language of Yang-Mills theories is the principal bundle formalism.

Principal G-bundle (P, π, M)

- *P* a smooth manifold called «fiber bundle»,
- *M* a smooth manifold called «base manifold»,
- $\pi: P \to M$ a smooth projection,

Such that:

- G has a free and transitive action on $\pi^{-1}(x)$, $x \in M$. Hence, $\pi^{-1}(x) \cong G$,
- $P/G \cong M$.

Gauge field encoded in a connection

 $\omega \in \Omega^1(P, g)$

Such that:

- $\omega(X^A) = A, A \in \mathfrak{g}$
- $R_a^* \omega = \operatorname{Ad}_{a^{-1}} \omega, \ a \in G$

Fiber bundle structure of Ashtekar variables Orthonormal frame bundle

A principal bundle appears from the tetrad formulation: orthonormal frame bundle $P^{SO}(M)$

$$g \text{ metric on } M \iff P^{SO}(M)$$

 $P_x^{SO}(M) = \{h: \mathbb{R}^n \to T_x M \mid h \text{ oriented isometry}\} = \{\text{collection of orthonormal basis of } T_x M \}$

A choice of the tetrad is the choice of a section $e: M \to P^{SO}(M)$

A Lorentz connection ω is a connection on $P^{SO}(M)$ (metric-compatible)

E.g. in n=4 the tetrad e_{α}^{μ} is $h(\varepsilon_{\alpha}) \doteq e_{\alpha} = e_{\alpha}^{\mu}\partial_{\mu}$ and so $g(e_{\alpha}, e_{\beta}) = \langle \varepsilon_{\alpha}, \varepsilon_{\beta} \rangle = \eta_{\alpha\beta}$ $\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\}$ canonical basis of \mathbb{R}^{4} M

Preserving Gauge Symmetries in Cosmology via LQG

Fiber bundle structure of Ashtekar variables The dimension 3 - Dreibein

3-dimensional Riemannian manifold (Σ, q)

 $P^{SO}(\Sigma)$ is a principal SO(3)-bundle \Rightarrow Gauge group SO(3)

A choice of a triad $e_i^a(x)$ is equivalent to the choice of a section $e: \Sigma \to P^{SO}(\Sigma)$, i.e. $\pi(e_x) = x$

 $e_x(\varepsilon_i) = e_i^a(x)\partial_a$

 $P^{SO}(\Sigma)$

Σ

3

Fiber bundle structure of Ashtekar variables The dimension 3 – SU(2) appears

3-dimensional Riemannian manifold (Σ, q)

Spin Structure

 $P^{Spin}(\Sigma)$

 $P^{SO}(\Sigma)$

Σ

• Principal SU(2)-bundle $P^{Spin}(\Sigma)$

• **Double-covering** $\rho: P^{Spin}(\Sigma) \to P^{SO}(\Sigma)$

Lift of the dreibein \overline{e} s.t. $e = \rho \circ \overline{e}$ (It is not unique, but it does not matter)

$$P^{SO}(\Sigma) \\\downarrow \\\Sigma$$

Fiber bundle structure of Ashtekar variables The dimension 3 – Connection

3-dimensional spin manifold
$$(\Sigma, q)$$

 \downarrow
 $P^{SO}(\Sigma)$
 \downarrow
 Σ

A spin connection is represented by a 1-form ω with values in $\mathfrak{su}(2)$ on $P^{Spin}(\Sigma)$

A metric-compatible connection is represented by a 1-form ϖ with values in $\mathfrak{so}(3)$ on $P^{SO}(\Sigma)$

Ashtekar connection: Local field of a spin connection $A = \bar{e}^* \omega$ is a 1-form with values in $\mathfrak{su}(2)$ on Σ

Fiber bundle structure of Ashtekar variables The dimension 3 – Electric field

The space of Ashtekar connection \mathcal{A} is independent on the choice of spin structure and metric. Canonically it is the space of SU(2) connections

Collect the metric data in the electric field E

The electric field E can be interpreted as a 2-form on Σ with values in $ad^*P^{Spin}(\Sigma)$. Described locally by:

 $E = \star e_a^i dx^a \tau_i$

Cosmological sector of GR in Ashtekar variables A Yang-Mills approach

[Brodbeck '96] [Bojowald, Kastrup '00] [MB '24] [MB '24]

 $P^{Spin}(\Sigma)$ Yang-Mills variables \downarrow Connection ω is a 1-form on $P^{Spin}(\Sigma)$ with value in the Lie algebra of SU(2) $P^{SO}(\Sigma)$ Dreibein e is a section in $P^{SO}(\Sigma)$ \downarrow Ashtekar variables Σ Connection A is the local field $A = e^*\omega$ Electric field E is built from the dreibein $E = * e_a^i dx^a \tau_i$

The problem is to find the cosmological sector of those variables

Cosmological sector of GR in Ashtekar variables Cosmological hypothesis

Homogeneity: a connected Lie group S acts transitively and freely on $\Sigma \Rightarrow \Sigma \cong S$

Namely, for every two points x, y there exists a unique $g \in S$ s.t. $y = L_g x$

Homogeneous ADM variables (q, K): they are S-invariant tensors

$$L_g^* q = q$$
$$L_g^* K = K$$

Breaks diffeo-invariance $Diff(\Sigma) \rightarrow S_R \rtimes Aut(S)$

Cosmological sector of GR in Ashtekar variables Cosmological hypothesis for gauge fields

 $P^{SO}(S)$ is homogeneous if it is S-invariant, i.e. there exists an action ϕ of S s.t. $\pi \circ \phi(g) = L_g$

There exists a unique(!) homogeneous spin structure on S

Homogeneity condition for connection from Wang's theorem $\phi(g)^*\omega = \omega, \forall g \in S$ (classified by linear maps $\Lambda: \mathfrak{s} \to \mathfrak{su}(2)$)

Ashtekar connections as homogeneous spin connections

The request of homogeneity for Ashtekar connection yields a homogeneous geometry for Σ

Cosmological sector of GR in Ashtekar variables Reduced Phase Space

Configuration space $\mathcal{A}^{S} = \{A \mid A = e^{*}\omega, \omega \text{ homogeneous}\}$

Dreibein is a section in a homogeneous bundle, but it is not homogeneous itself

Phase space variables $(A_a^i(x), E_i^a(x))$ such that, in some gauge $(\phi_I^i \theta^I(x), p_i^I \xi_I(x))$ $\xi_I \in \mathfrak{s} \quad [\xi_I, \xi_J] = f_{IJ}^K \xi_K$ $\theta^I \in \mathfrak{s}^* \quad \theta^I + \frac{1}{2} f_{JK}^I \theta^J \theta^K$

The set of constraints are the same of LQG

Cylindrical functions for Cosmology Gauge transformations

Configuration space $\mathcal{A}^{S} = \{A \mid A = e^{*}\omega, \omega \text{ homogeneous}\}$

[Brunnemann, Fleischhack '12]

Cylindrical functions $Cyl(\mathcal{A}^{S})$ $f_{\gamma}: \mathcal{A}^{S} \to SU(2)^{E(\gamma)} \to \mathbb{C}$

Infinitesimal transformations

Recover gauge symmetry
$$\begin{array}{lll} \mathcal{G} \times \mathcal{A}^S & \to & \mathcal{A}^S \\ (u, e^* \omega) & \mapsto & e^* u^* \omega &= (u \circ e)^* \omega = e'^* \omega \end{array} \qquad A \mapsto A - D\Lambda$$

Residual diffeo symmetry
$$\operatorname{Aut}(S) \times \operatorname{Cyl}(\mathcal{A}^S) \rightarrow \operatorname{Cyl}(\mathcal{A}^S)$$

 $(\varphi, f_{\gamma}) \mapsto f_{\varphi(\gamma)}$ $A \mapsto A + \mathcal{L}_X A$

Cylindrical functions for Cosmology Classical Constraints Algebra

Configuration space $\mathcal{A}^{S} = \{A \mid A = e^{*}\omega, \omega \text{ homogeneous}\}$

Smearing functions must generate the correct gauge transformations

$$\in C_c^{\infty}(\Sigma, \mathfrak{su}(2))$$
 $X \in Lie(S_R \rtimes Aut(S)) \subset \mathfrak{X}(\Sigma)$ $N = const.$

 $\{G(\Lambda), G(\Lambda')\} \propto G([\Lambda, \Lambda'])$ $\{V(X), V(X')\} \propto V(\mathcal{L}_X X')$ $\{V(X), H(N)\} = 0$ $\{H(M), H(N)\} = 0$

Λ

Cylindrical functions for Cosmology Integral curves and homogeneous graphs

An important property of curves on S:

every curve can be approximated by piecewise integral curves of invariant vector field $\xi \in \mathfrak{s}$

Homogeneous graphs as suitable collections of piecewise integral curves

The homogeneous graphs are dense in the set of graphs

Distinguished subspace of cylindrical functions over homogeneous graph $Cyl_{S}(\mathcal{A}^{S})$

Conclusions

- Ashtekar-Barbero-Immirzi formulation has a rigourous and clear geometric interpretation, in which the data are encoded in a spin connection A and a section (gauge) e.
- In this formulation we can find a cosmological sector using the Wang's theorem preserving local gauge degrees of freedom.
- We are able to provide cylindrical functions, and a distinguished invariant subspace based on homogeneous graphs.
- We have constraints associated to gauge transformations, but with a simplified algebra.

Outlook

- Implement the algebra at the quantum level. Solving the Hamiltonian constraint restricting the ambiguities by comparison with LQC.
- Recovering the LQC dynamics in some suitable limit (single-vertex model, $j \gg 1$).

Thank you for your attention

Preserving Gauge Symmetries in Cosmology via Loop Quantum Gravity

Matteo Bruno

ľ L

CGM Research Group

Symmetry-reduced phase space

Configuration space $\mathcal{E} = \{$ electric field gauge-equivalent to a homogeneous one $\}$

Fixing a point $E \in \mathcal{E}$ determine a metric on Σ , and we can build $\mathcal{A}_E^S \cong \mathcal{A}^S$

 $\mathcal{A}^S \hookrightarrow \mathcal{P}$ Phase space \mathcal{P} as fiber bundle $\mathcal{P} = \bigsqcup_{E \in \mathcal{E}} \mathcal{A}_E^S$ $\mathcal{A}^S \hookrightarrow \mathcal{P}$ \mathcal{E} \mathcal{E}

On this phase space, the contraints have the same functional forms of the constraints in usual LQG

Point holonomies and invariant spin-network states

Equation of parallel transport along a homogeneous curve in a homogeneous gauge

 $\dot{u}(t) = \Lambda(v)u(t)$

Holonomy $h_c(A) = u(1)^{-1} = \exp(\Lambda(v))$

The holonomies brought by invariant homogeneous spin-network states are point holonomies

Topology of \mathcal{A}/\mathcal{G}

 $\mathcal{A}^{S}/\mathcal{G}$ spin (metric-compatible) homogeneous connections modulo gauge transformations

 \mathcal{M} homogeneous SU(2) connections modulo gauge transformations

Relevant Homeomorphisms

	$\mathcal{A}^{S}/\mathcal{G}$	${\mathcal M}$
Bianchi universes ($H = \{1\}$)	\mathbb{R}^{6}	\mathbb{R}^{6}
Axial symmetry (H = U(1))	$\mathbb{R} \times \mathbb{R}_+$	$\bigsqcup_{n\in\mathbb{N}}\mathbb{R}$
FLRVV (H = SO(3))	\mathbb{R}	{0}