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Fiber bundle structure of Ashtekar variables
A Yang-Mills approach

1Preserving Gauge Symmetries in Cosmology via LQG

The natural language of Yang-Mills theories is the principal bundle formalism.

Principal 𝐺-bundle 𝑃, 𝜋,𝑀

• 𝑃 a smooth manifold called  «fiber bundle»,

• 𝑀 a smooth manifold called «base manifold»,

• 𝜋: 𝑃 → 𝑀 a smooth projection,

Such that:

• 𝐺 has a free and transitive action on 𝜋−1 𝑥 , 𝑥 ∈ 𝑀. Hence, 𝜋−1 𝑥 ≅ 𝐺,

• 𝑃/𝐺 ≅ 𝑀.

Gauge field encoded in a connection

𝜔 ∈ Ω1 𝑃, 𝔤

Such that:

• 𝜔 𝑋𝐴 = 𝐴, 𝐴 ∈ 𝔤

• 𝑅𝑎
∗𝜔 = Ad𝑎−1𝜔, 𝑎 ∈ 𝐺



Fiber bundle structure of Ashtekar variables
Orthonormal frame bundle
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𝑃𝑆𝑂 𝑀
↓
𝑀

A principal bundle appears from the tetrad formulation:  orthonormal frame bundle

𝑃𝑥
𝑆𝑂 𝑀 = ℎ:ℝ𝑛 → 𝑇𝑥𝑀 ℎ oriented isometry} = {collection of orthonormal basis of 𝑇𝑥𝑀 }

𝑔 metric on 𝑀 ⟺ 𝑃𝑆𝑂 𝑀

E.g. in n=4 the tetrad 𝑒𝛼
𝜇

is  ℎ 𝜀𝛼 ≐ 𝑒𝛼 = 𝑒𝛼
𝜇
𝜕𝜇 and so 𝑔 𝑒𝛼 , 𝑒𝛽 =< 𝜀𝛼 , 𝜀𝛽 >= 𝜂𝛼𝛽

𝜀1, 𝜀2, 𝜀3, 𝜀4 canonical basis of ℝ4

A choice of the tetrad is the choice of a section 𝑒:𝑀 → 𝑃𝑆𝑂 𝑀

A Lorentz connection 𝜔 is a connection on 𝑃𝑆𝑂 𝑀 (metric-compatible) 
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Fiber bundle structure of Ashtekar variables
The dimension 3 - Dreibein
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𝑃𝑆𝑂 Σ
↓
Σ

3-dimensional Riemannian manifold Σ, q

𝑃𝑆𝑂 Σ is a principal 𝑆𝑂 3 -bundle  ⇒ Gauge group 𝑆𝑂 3

A choice of a triad 𝑒𝑖
𝑎 𝑥 is equivalent to the choice of a section 𝑒: Σ → 𝑃𝑆𝑂 Σ , i.e. 𝜋 𝑒𝑥 = 𝑥

𝑒𝑥 𝜀𝑖 = 𝑒𝑖
𝑎 𝑥 𝜕𝑎
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Fiber bundle structure of Ashtekar variables
The dimension 3 – SU(2) appears
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𝑃𝑆𝑂 Σ
↓
Σ

3-dimensional Riemannian manifold Σ, q

• Principal 𝑆𝑈 2 -bundle 𝑃𝑆𝑝𝑖𝑛 Σ

• Double-covering 𝜌: 𝑃𝑆𝑝𝑖𝑛 Σ → 𝑃𝑆𝑂 Σ

𝑃𝑆𝑝𝑖𝑛 Σ
↓

𝑃𝑆𝑂 Σ
↓
Σ

Lift of the dreibein ҧ𝑒 s.t. 𝑒 = 𝜌 ∘ ҧ𝑒 (It is not unique, but it does not matter)

Spin Structure
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Fiber bundle structure of Ashtekar variables
The dimension 3 – Connection
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A spin connection is represented by a 1-form 𝜔 with values in 𝔰𝔲(2) on 𝑃𝑆𝑝𝑖𝑛 Σ

A metric-compatible connection is represented by a 1-form 𝜛 with values in 𝔰𝔬(3) on 𝑃𝑆𝑂 Σ

⇕ 𝜔 = 𝜌∗𝜛

Ashtekar connection: Local field of a spin connection 𝐴 = ҧ𝑒∗𝜔 is a 1-form with values in 𝔰𝔲(2) on Σ

3-dimensional spin manifold Σ, q
𝑃𝑆𝑝𝑖𝑛 Σ

↓
𝑃𝑆𝑂 Σ

↓
Σ
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Fiber bundle structure of Ashtekar variables
The dimension 3 – Electric field
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Collect the metric data in the electric field 𝐸

The electric field 𝐸 can be interpreted as a 2-form on Σ with values in 𝑎𝑑∗𝑃𝑆𝑝𝑖𝑛 Σ . Described locally by:

𝐸 = ⋆ 𝑒𝑎
𝑖 𝑑𝑥𝑎𝜏𝑖

3-dimensional spin manifold Σ, q
𝑃𝑆𝑝𝑖𝑛 Σ

↓
𝑃𝑆𝑂 Σ

↓
Σ

The space of Ashtekar connection 𝒜 is 

independent on the choice of spin structure 

and metric. Canonically it is the space of 

SU(2) connections
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Cosmological sector of GR in Ashtekar variables
A Yang-Mills approach

𝑃𝑆𝑝𝑖𝑛(Σ)

↓
𝑃𝑆𝑂(Σ)

↓
Σ

Connection 𝜔 is a 1-form on 𝑃𝑆𝑝𝑖𝑛(Σ) with value in the Lie algebra of SU(2) 

Dreibein 𝑒 is a section in 𝑃𝑆𝑂(Σ)

Yang-Mills variables

Connection 𝐴 is the local field 𝐴 = 𝑒∗𝜔

Electric field 𝐸 is built from the dreibein 𝐸 =⋆ 𝑒𝑎
𝑖 𝑑𝑥𝑎𝜏𝑖

Ashtekar variables
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[Brodbeck ‘96]

[Bojowald, Kastrup ‘00]

[MB ‘24]

[MB ‘24]

The problem is to find the cosmological sector of those variables
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Cosmological sector of GR in Ashtekar variables
Cosmological hypothesis

Homogeneity:  a connected Lie group 𝑆 acts transitively and freely on Σ ⇒ Σ ≅ 𝑆

Namely, for every two points 𝑥, 𝑦 there exists a unique 𝑔 ∈ 𝑆 s.t. 𝑦 = 𝐿𝑔𝑥
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Homogeneous ADM variables (𝑞, 𝐾):  they are 𝑆-invariant tensors

𝐿𝑔
∗ 𝑞 = 𝑞

𝐿𝑔
∗𝐾 = 𝐾

Breaks diffeo-invariance

Diff Σ → 𝑆𝑅 ⋊ Aut(𝑆)

Preserving Gauge Symmetries in Cosmology via LQG



Cosmological sector of GR in Ashtekar variables
Cosmological hypothesis for gauge fields

The request of homogeneity for Ashtekar connection yields a homogeneous geometry for Σ

𝑃𝑆𝑂 𝑆 is homogeneous if it is 𝑆-invariant, i.e. there exists an action 𝜙 of 𝑆 s.t.𝜋 ∘ 𝜙 𝑔 = 𝐿𝑔

There exists a unique(!) homogeneous spin structure on 𝑆

Homogeneity condition for connection from Wang’s theorem 𝜙 𝑔 ∗𝜔 = 𝜔, ∀𝑔 ∈ 𝑆
(classified by linear maps Λ: 𝖘 → 𝔰𝔲 2 ) 
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Ashtekar connections as homogeneous spin connections
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Cosmological sector of GR in Ashtekar variables
Reduced Phase Space
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Configuration space 𝒜𝑆 = 𝐴 𝐴 = 𝑒∗𝜔,𝜔 homogeneous} Dreibein is a section in a homogeneous bundle, 

but it is not homogeneous itself
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Phase space variables 𝐴𝑎
𝑖 𝑥 , 𝐸𝑖

𝑎 𝑥 such that, in some gauge 𝜙𝐼
𝑖𝜃𝐼 𝑥 , 𝑝𝑖

𝐼𝜉𝐼 𝑥

𝜉𝐼 ∈ 𝔰 𝜉𝐼 , 𝜉𝐽 = 𝑓𝐼𝐽
𝐾𝜉𝐾

𝜃𝐼 ∈ 𝔰∗ 𝜃𝐼 +
1

2
𝑓𝐽𝐾
𝐼 𝜃𝐽𝜃𝐾

The set of constraints are the same of LQG



Cylindrical functions for Cosmology
Gauge transformations
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Configuration space 𝒜𝑆 = 𝐴 𝐴 = 𝑒∗𝜔,𝜔 homogeneous}

Cylindrical functions  Cyl(𝒜𝑠) 𝑓𝛾:𝒜
𝑆 → 𝑆𝑈 2 𝐸 𝛾 → ℂ

Recover gauge symmetry 𝒢 ×𝒜𝑆 → 𝒜𝑆

(𝑢, 𝑒∗𝜔) ↦ 𝑒∗𝑢∗𝜔 = 𝑢 ∘ 𝑒 ∗𝜔 = 𝑒′∗𝜔
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Holonomies are SU(2)-valued no almost-periodic
[Brunnemann, Fleischhack ‘12]

Residual diffeo symmetry Aut(𝑆) × Cyl(𝒜𝑆) → Cyl(𝒜𝑆)
(𝜑, 𝑓𝛾) ↦ 𝑓𝜑 𝛾

Infinitesimal transformations

𝐴 ↦ 𝐴 − 𝐷Λ

𝐴 ↦ 𝐴 + ℒ𝑋𝐴



Cylindrical functions for Cosmology
Classical Constraints Algebra
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Configuration space 𝒜𝑆 = 𝐴 𝐴 = 𝑒∗𝜔,𝜔 homogeneous}
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Smearing functions must generate the correct gauge transformations

Λ ∈ 𝐶𝑐
∞(Σ, 𝔰𝔲(2)) 𝑋 ∈ 𝐿𝑖𝑒 𝑆𝑅 ⋊ Aut 𝑆 ⊂ 𝔛 Σ 𝑁 = 𝑐𝑜𝑛𝑠𝑡.

𝐺 Λ , 𝐺 Λ′ ∝ 𝐺 Λ, Λ′

𝑉 X , 𝑉 𝑋′ ∝ 𝑉 ℒ𝑋𝑋
′

𝑉 X ,𝐻 𝑁 = 0

𝐻 𝑀 ,𝐻 𝑁 = 0



Cylindrical functions for Cosmology
Integral curves and homogeneous graphs
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An important property of curves on 𝑆: 

every curve can be approximated by piecewise integral curves of invariant vector field 𝜉 ∈ 𝔰

The homogeneous graphs are dense in the set of graphs

Homogeneous graphs as suitable collections of piecewise integral curves
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Distinguished subspace of cylindrical functions over homogeneous graph 𝐶𝑦𝑙𝑆 𝒜𝑆



Conclusions
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• Ashtekar-Barbero-Immirzi formulation has a rigourous and clear geometric interpretation, in 

which the data are encoded in a spin connection 𝐴 and a section (gauge) 𝑒.

• In this formulation we can find a cosmological sector using the Wang’s theorem preserving 

local gauge degrees of freedom.

• We are able to provide cylindrical functions, and a distinguished invariant subspace based on 

homogeneous graphs.

• We have constraints associated to gauge transformations, but with a simplified algebra.
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Outlook

• Implement the algebra at the quantum level. Solving the Hamiltonian constraint restricting the 

ambiguities by comparison with LQC.

• Recovering the LQC dynamics in some suitable limit (single-vertex model, 𝑗 ≫ 1).



Thank you for your attention

Matteo Bruno
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Symmetry-reduced phase space

Configuration space ℰ = {electric field gauge-equivalent to a homogeneous one}

Fixing a point 𝐸 ∈ ℰ determine a metric on Σ, and we can build 𝒜𝐸
𝑆 ≅ 𝒜𝑆

Phase space 𝒫 as fiber bundle 𝒫 = ۬𝐸∈ℰ𝒜𝐸
𝑆

𝒜𝑆 ↪ 𝒫
↓
ℰ

On this phase space, the contraints have the same functional forms of the constraints in usual LQG 

Preserving Gauge Symmetries in Cosmology via LQG I



Point holonomies and invariant spin-network states

II

Equation of parallel transport along a 

homogeneous curve in a homogeneous gauge

ሶ𝑢 𝑡 = Λ 𝑣 𝑢 𝑡

Holonomy ℎ𝑐 𝐴 = 𝑢 1 −1 = exp Λ 𝑣

The holonomies brought by invariant homogeneous spin-network states are point holonomies

𝑒

𝑃𝑆𝑂(𝑆) 𝑃𝑆𝑂(𝑆)

𝑆 𝑆

𝜙 𝑔

𝐿𝑔

𝑒π π

𝜙 𝑔 ∘ 𝑒 = 𝑒 ∘ 𝐿𝑔

Homogeneous gauge
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Topology of 𝒜/𝒢

𝒜𝑆/𝒢 spin (metric-compatible) homogeneous connections modulo gauge transformations 

ℳ homogeneous SU(2) connections modulo gauge transformations 

Relevant Homeomorphisms

𝓐𝑺/𝓖 𝓜

Bianchi universes

(𝐻 = {1})
ℝ6 ℝ6

Axial symmetry

(𝐻 = 𝑈(1))
ℝ × ℝ+ ۬𝑛∈ℕℝ

FLRW

(𝐻 = 𝑆𝑂(3))
ℝ {0}
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