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Refined picture: relative, absolute and universal swamp

Relative swamp of given QG theory: Absolute swamp: Universal swamp:
Swamp specific to that theory iIntersection of all swamps intersection of all swamps

?

= union of all swamps

ST swamp

Is there an absolute swamp? Is the swamp universal?

[AE, Hebecker, Pawlowski, Walcher '24]
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Predictions for effective field theories at the Planck scale: Example: Standard Model
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RG scale in GeV
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Asymptotic safety in gravity-matter systems

 Scale symmetry at (trans-) Planckian scales

 Compelling evidence with Standard Model-like matter sectors

 Open questions: Lorentzian signature, unitarity under investigation

running couplings

Mp1ancx scale-symmetric
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Renormalization Group scale k

Origin of predictions at the Planck scale

Quantum fluctuations
screen or antiscreen interactions, e.g.,

QED: B, = kd, e(k) = e+ ...
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— e(k) decreases as k is lowered
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— g(k) increases as k is lowered

relevant coupling = free parameter
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quantum fluctuations drive coupling away
from scale symmetry
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achievable at the Planck scale
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Lightning review of asymptotic safety
& its predictive power

- — . 2 5 5 N 25 ‘ 35
How non-perturbative is the fixed point? Key property: near-perturbative —— ————
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[Falls, Litim et al. ’13]
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asymptotic-safety inspired black holes have vanishing
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No-global symmetries conjecture: What gives?

1) Black-hole spacetimes violate conservation of global charges Possibility 1: black-hole configurations not adequately
accounted for in functional RG (due to Euclidean signature?)

q/l/ N
‘ /\/\/ (can numerical approaches to the Pl help?)
N

particle w.
global charge

black hole undergoes complete Possibility 2: black holes in asymptotic safety work differently

Hawking evaporation (no remnants)

black hole

A toti fet t lack-hole th icS?
with Hawking entropy symptotic safety or standard black-hole thermodynamics

2) Gravity-matter path integral contains black-hole configurations

Possibility 2b: black holes dynamically suppressed in path integral

= effective theory for matter has no conserved global charges i o | _ _
@gﬂye : destructive interference for configurations with § — oo

But: explicit calculations in asymptotic safety: ” . Weyl tensor

No interactions are generated by gravity S=...+ Jd4x oo for singular black holes

which violate global symmetries of matter fields

S=..4 |d* > 00 at the horizon
J V=84V, 0 = (v,0)
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No-global symmetries conjecture: What gives?
[Banks, Dixon ’88; Giddings, Strominger ’88; Abbott, Wise ’89; Kallosh, Linde, Linde, Susskind '95....]
1) Black-hole spacetimes violate conservation of global charges Possibility 1: black-hole configurations not adequately

accounted for in functional RG (due to Euclidean signature?)

M/ N
‘ /\/\/ (can numerical approaches to the Pl help?)
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Possibility 2: black holes in asymptotic safety work differently

particle w.

global charge black hole undergoes complete

Hawking evaporation (no remnants)

black hole

Asymptotic safety or standard black-hole thermodynamics?

with Hawking entrop
9 y [Basile, Knorr, Platania, Schiffer *25]

2) Gravity-matter path integral contains black-hole configurations

= effective theory for matter has no conserved global charges

Scenario I: Scenario II: Scenario III:
the absolute swampland is universal. the absolute swampland exists. no absolute swampland exists.

ST swamp

But: explicit calculations in asymptotic safety:

ST swamp LQG swamp

LQG swamp

No interactions are generated by gravity
which violate global symmetries of matter fields

[AE ’12; AE, Held ’17; de Brito, AE, Lino dos Santos ’20,
Laporte, Pereira, Saueressig, Wang ’21,...

(full list in review AE, Schiffer '22] [AE, Hebecker, Pawlowski, Walcher ‘24]
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Gravity as the weakest force

<eqy/2

Weak-gravity conjecture:
MPlanck

Motivation: If global symmetries excluded, then the limit of vanishing gauge coupling cannot be taken

Asymptotic safety: upper bound (not lower bound) on the gauge coupling
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Gravity as the weakest force

<egqy/2

Weak-gravity conjecture:
MPlanck

[Arkani-Hamed, Motl, Nicolis, Vafa ’07]

Motivation: If global symmetries excluded, then the limit of vanishing gauge coupling cannot be taken

Asymptotic safety: upper bound (not lower bound) on the gauge coupling

147 7 .

[ A ]

1.2t UV unsafe trajectories,~ Pid _ ;
/’ _ - "

A

1.0¢
~ [ ]
< 0.8¢ .
@)} | i
0.6/
04 ZZFF=--TTT -Z
028 AT *
1010 1020 1030 1040

g, becomes e after
electroweak symmetry breaking

RG scale kin GeV

41
_ _ 3
Boy = ko 8,(K) = —fog, + ———g + ..
Jo = 0 fork > Mpy,n
Jo = Ofor k < Mpjy,cx
Scenario I: Scenario II: Scenario III:
the absolute swampland is universal. the absolute swampland exists. no absolute swampland exists.
ST swamp ST swamp LQG swamp

LQG swamp

[AE, Hebecker, Pawlowski, Walcher ‘24]



de Sitter conjecture

C
De Sitter spacetime is not compatible with quantum gravity and any scalar potential V must not be too flat: |V V| > Y; V
Planck



De Sitter spacetime is not compatible with quantum gravity and any scalar potential V must not be too flat: |V V| >

Asymptotic safety: fixed point connected to positive cosmological constant at large scales

de Sitter conjecture
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De Sitter spacetime is not compatible with quantum gravity and any scalar potential V must not be too flat: |V V| >

Asymptotic safety: fixed point
connected to positive cosmological
constant at large scales

-20 0 20 40 60 80
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dS «— AdS
-120
1(()) ¥ 7
¥ Y
_10-120}
- classical = fixed-
o _108° scaling = point
I regime scaling
< 20 regime
G -10
-1}
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Log[k/eV]

[de Alwis, AE, Held, Pawlowski, Schiffer, Versteegen ’19]

(N3(D))

de Sitter conjecture

Causal Dynamical Triangulations:
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[Dai, Freeman, Laiho, Schiffer, Unmuth-Yockey '23]



de Sitter conjecture

C
De Sitter spacetime is not compatible with quantum gravity and any scalar potential V must not be too flat: |V V| > Vv

MPlanck
Asymptotic safety: fixed point [Ooguri, Palti, Shiu, Vafa 18]
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[de Alwis, AE, Held, Pawlowski, Schiffer, Versteegen ’19]

LQG swamp

[AE, Hebecker, Pawlowski, Walcher ‘24]



So is there no absolute swamp that is shared between distinct approaches?

Scenario I: Scenario II: Scenario I1I:
the absolute swampland is universal. the absolute swampland exists. no absolute swampland exists.

ST swamp

ST swamp

[AE, Hebecker, Pawlowski, Walcher ‘24]
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Asymptotic safety generates a universal corner of the swampland

Main idea: Asymptotic safety in an intermediate regime Swamplands without effective asymptotic safety
(effective asymptotic safety) Mpianek R € anlld
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InCcreasing energy scales

[de Alwis, AE, Held, Pawlowski, Schiffer, Versteegen ’19]



Asymptotic safety generates a universal corner of the swampland

Main idea: Asymptotic safety in an intermediate regime Swamplands without effective asymptotic safety
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Universality from effective asymptotic safety: mechanism

(giz Universality:

f/ / 7 A8 Different initial conditions for infrared attractive couplings

f/ / / are mapped to ~ fixed-point value

0
/A ] 8:(k) = gy st (k- Cpyng)
7/’///(;"/;'/(/,/ j/ L\\\:\\‘\«‘:ﬂt& A crimonent

t* 0 < O for infrared attractive couplings
- free parameter

— (initial condition at gz(ffjnlld) )
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arrows point towards decreasing energy scales
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Universality from effective asymptotic safety: mechanism
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82

Universality:

Different initial conditions for infrared attractive couplings

are mapped to ~ fixed-point value

gZ(k) — g2,*+c (k ' ffund)_g\

free parameter

critical exponent
6 < O for infrared attractive couplings

(initial condition at gz(fgnlld) )

To delineate universal part of the swamp:

— which interactions correspond to infrared attractive couplings?

— what are their fixed-point values?



Universality from effective asymptotic safety: mechanism in more detalil

gZ(k) — g2,*+f (k ' ffund) -

free parameter
(initial condition at g,(Z; 1))

To delineate universal part of the swamp: (Tentative) fixed-point properties:
— which interactions correspond to infrared attractive couplings? — near-perturbative: dimension > 5 interactions,
— what are their fixed-point values? because 0 ~ 0, + 00

Zi (Re(e(i)) o 6Gauss>2

—
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82(k) = g «tc (k- ffund)_e\

critical exponent & < O:
for couplings belonging to dimension-2 5- interactions

free parameter
(initial condition at g,(Z; 1))

To delineate universal part of the swamp: (Tentative) fixed-point properties:
— which interactions correspond to infrared attractive couplings? — near-perturbative: dimension > 5 interactions,
— what are their fixed-point values? because 0 ~ 0, + 00

Zi (Re(e(i)) o 6Gauss>2

—




Universality from effective asymptotic safety: mechanism in more detalil

_ —0
82(k) = grlitc (k- Cruna)
critical exponent 6 < O:
for couplings belonging to dimension-2 5- interactions
free parameter
(initial condition at g,(Z; 1))
To delineate universal part of the swamp: (Tentative) fixed-point properties:
— which interactions correspond to infrared attractive couplings? — near-perturbative: dimension > 5 interactions

— what are their fixed-point values? — global symmetries: zero if symmetry-protected



Universality from effective asymptotic safety: Examples

critical exponent 6 < O:
vanishes if interaction for couplings belonging to dimension-2 5- interactions

protected by global symmetry f.re.e. parame.t.er 1
(initial condition at g,(¢; 1))
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Examples:
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>
* Proton decay O €
ith 6 2 2) G +
_9 WI —_ — e o o
quark-lepton interactions that mediate proton decay: g, ~ %;q 1+ C (k - Cun d) 994! qqq! 157 "

protected by U(1 )Baryon



Universality from effective asymptotic safety: Examples

—0
026) = gl (k- brng)
/ critical exponent 8 < 0:

vanishes if interaction for couplings belonging to dimension-2 5- interactions

protected by global symmetry f.re.e. parame.t.er 1
(initial condition at g,(¢; 1))

Examples:
' + 71'0
>
* Proton decay » e
e 0 ith 0 2 = G +
— Wi —_ B2 « o
quark-lepton interactions that mediate proton decay: g, ~ %;ql* +c (k - ffund) e 944! 157
protected by U(1)p,yon
 Higgs portal to dark scalar
"H ¢* with Higgs fi =it c (k- Cang) " With 6, = — G
Ay H'H ¢~ with Higgs field / and dark scalar ¢: Ay = g+ ¢ ( : fund) with 0, = 5,

protected by shift symmetry ¢ — ¢ + s



Universality from effective asymptotic safety: Examples

—0
026) = gl (k- brng)
/ critical exponent 8 < 0:

vanishes if interaction for couplings belonging to dimension-2 5- interactions

protected by global symmetry f.re.e. parame.t.er 1
(initial condition at g,(¢; 1))

Examples:
‘ + 71'0
>
* Proton decay » e
e ' 0 ith 0 2 = G +
quark-lepton interactions that mediate proton decay: g, ~ /gé;l* +c (k- Crna) W Yaqq1 = 152
protected by U(1)p,yon
 Higgs portal to dark scalar
Ay H'H ¢* with Higgs field H =i+ e (ke rung) " With 0, = — G
o ¢~ with Higgs field H and dark scalar ¢: Ay = *+c( : fund) with 0, = 137

protected by shift symmetry ¢ — ¢ + s
* Axion-like-particle coupling to photon

- —0 G
g, a - F, F* with axion-like particle a and electromagnetic field strength F : g = /%’: +c (k - ffund) “ withf, = -2+ —

protected by shift symmetrya — a + s &



Universality from effective asymptotic safety: Examples

b (ke Crna)

/ critical exponent & < 0:

vanishes if interaction for couplings belonging to dimension-2 5- interactions

protected by global symmetry f.re.e. parame.t.er 1
(initial condition at g,(¢; 1))

Examples:

® . A o
* Proton decay O e An intermediate, approximately asymptotically safe regime* 79
. : . ifeti withd, ,=—72 G:+ ...
quark-lepton interactions extends the lifetime of the proton qqql 157 *

 decouples dark scalars from the Higgs field

 decouples axion-like-particles from the photon

Higgs portal to dark scalal

FIT 42 it LG , 55
Ay H'H ¢~ with Higgs fiel G
187

* within the systematic uncertainties of our calculations

 Axion-like-particle coupling to photoﬁ_

+c (k- ffund)_gga with 6, = —2 + 5
’ T

g.,a-F WF/"” with axion-like particle a and electromagnetic field strength [ : g, = &/

protected by shift symmetrya — a + s



Effective-Field-Theory consistency and the asymptotically safe swampland

Asymptotically safe gravity induces higher-order interactions

Zy

h
Example: (Abelian vector fields) £, = TFz | -

k4

14%9)
Je4

(F2)" + 2 F*

in the presence of gravity: w, # 0, 1, # 0

Causality bounds

Causality bounds (no detectable propagation outside the light cone)
W, 3 4w, + 3h,

h2 _Z ‘4W2+h2|

9




Effective-Field-Theory consistency and the asymptotically safe swampland

Asymptotically safe gravity induces higher-order interactions
Are causality bounds violated only inside

the swampland?
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Effective-Field-Theory consistency and the asymptotically safe swampland

Asymptotically safe gravity induces higher-order interactions
Are causality bounds violated only inside

the swampland?

Z 14%)

2
Example: (Abelian vector fields) £, = TFz | o (F2) +

< 4
J4

in the presence of gravity: w, # 0, 1, # 0

Causality bounds in asymptotically safe gravity

Causality bounds (no detectable propagation outside the light cone) R

Wo 3 4w, + 3h, :
& ——, > 1 1.75 Disfavored -
hy 4 4w+ by e e
1.50
Apply to photons in asymptotically safe gravity: 1.25 Reuter FP
" 1 .
e assume that can Wick-rotate action G 1.00
« start at interacting fixed point and integrate to low k: 0.75
use that w,(k), h,(k) are irrelevant and thus calculable 0.50 f
e gravity fluctuations decouple dynamically at Planck scale 0.25 Positivity-bounds Positivity-
' [ satisfied bounds
i t . violated
—0.2 0.0




Summary

Goal: understand the swampland as part of an effort to develop phenomenology of quantum gravity

Question: is there an absolute swampland (shared between QG approaches) or is the swampland even universal
(i.e., no relative swampland outside the absolute swampland)?

Status: string-inspired swampland may (in part) differ from relative swampland of asymptotic safety
(ho-global symmetries conjecture, weak-gravity conjecture, de Sitter conjecture)

universality in the swampland may be generated by asymptotic safety as intermediate regime
(proton lifetime extended, Higgs portal coupling switched off, axion-like-particle- photon coupling driven to zero)
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Goal: understand the swampland as part of an effort to develop phenomenology of quantum gravity

Question: is there an absolute swampland (shared between QG approaches) or is the swampland even universal
(i.e., no relative swampland outside the absolute swampland)?

Status: string-inspired swampland may (in part) differ from relative swampland of asymptotic safety
(ho-global symmetries conjecture, weak-gravity conjecture, de Sitter conjecture)

universality in the swampland may be generated by asymptotic safety as intermediate regime
(proton lifetime extended, Higgs portal coupling switched off, axion-like-particle- photon coupling driven to zero)

...more to come



