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Why is this relevant?
• phenomenological model building (e.g., dark matter, neutrino masses, modified gravity…):
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• observational tests of quantum gravity: swampland properties testable at  ( )ℓ ≫ ℓPlanck E ≪ MPlanck
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The swampland

Why is this relevant?

landscape

swampland

Landscape 
effective field theories that are 


ultraviolet completed by quantum gravity

Swampland 
field theories that are not


ultraviolet completed by quantum gravity

may depend on quantum theory of gravity 
(assume several internally consistent, distinct theories)

Space of all  
effective field theories of gravity and matter 

(e.g., GR+Standard Model,

Beyond Standard Model,

dark-energy models…)

• phenomenological model building (e.g., dark matter, neutrino masses, modified gravity…):

UV completion with quantum gravity as a selection principle


• observational tests of quantum gravity: swampland properties testable at  ( )ℓ ≫ ℓPlanck E ≪ MPlanck
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What is known about the swamp?

String-inspired swampland conjectures
 Concrete effective field theories in specific string-theory settings


Concrete effective field theories in asymptotic safety


Few hints about properties of matter in LQG, causal sets, EDTs…
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Agmon, Bedroya, Kang, Vafa ’22 
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String-inspired swampland conjectures in the light of asymptotic safety



Lightning review of asymptotic safety  
& its predictive power



Asymptotic safety in gravity-matter systems


• Scale symmetry at (trans-) Planckian scales

• Compelling evidence with Standard Model-like matter sectors 

• Open questions: Lorentzian signature, unitarity under investigation

[review of current status: AE, Schiffer ’22]

[e.g., Fehre, Litim, Pawlowski, Reichert ’21; Platania ’22; Saueressig, Wang ’23]
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bottom Yukawa coupling bound from above [AE, Held ’18]

Higgs quartic coupling predicted ( ) MHiggs ≈ 12X GeV
[Shaposhnikov, Wetterich ’09]

Neutrino Yukawa couplings driven towards small values
[Held PhD thesis ’19; Kowalska et al ’22; AE, Held ’22]

[AE, Schiffer ’19]



Asymptotic safety in gravity-matter systems


• Scale symmetry at (trans-) Planckian scales

• Compelling evidence with Standard Model-like matter sectors 

• Open questions: Lorentzian signature, unitarity under investigation
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metric propagator:
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Lightning review of asymptotic safety  
& its predictive power

Key property: near-perturbative


• free parameters  dimension-4-interactions

• similar set as free parameters at perturbative 


(Gaussian) fixed point


≃

Δθ =
∑i (Re(θ(i)) − θGauss)2

∑i

Image Credit: NASA/CXC/M.Weiss

How non-perturbative is the fixed point?

or

?

g*

1 − 2λ* + . . .

metric propagator:

[Falls, Litim et al. ’13][AE, Pauly ’18]

1
16πg k−2 ∫ d4x g (R − 2λk2)



String-inspired swampland conjectures in the light of asymptotic safety

no global symmetries

weak gravity

de Sitter
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So is there no absolute swamp that is shared between distinct approaches?
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Main idea: Asymptotic safety in an intermediate regime  
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Universality: 

Different initial conditions for infrared attractive couplings 
are mapped to ~ fixed-point value

 which interactions correspond to infrared attractive couplings? 

 what are their fixed-point values?

→

→
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Universality from effective asymptotic safety: mechanism in more detail

(Tentative) fixed-point properties:

 which interactions correspond to infrared attractive couplings? 

 what are their fixed-point values?

→

→

To delineate universal part of the swamp:

 near-perturbative: dimension  interactions, 

because  

 global symmetries: zero if symmetry-protected

→ ≳ 5

θ ≈ θGauss + δθ

→
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(initial condition at  )g2(ℓ−1

fund)

Δθ =
∑i (Re(θ(i)) − θGauss)2

∑i
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Universality from effective asymptotic safety: Examples

free parameter
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 for couplings belonging to dimension-  5- interactions

θ < 0
≳vanishes if interaction


protected by global symmetry

g2(k) = g2, *+c (k ⋅ ℓfund)−θ



Universality from effective asymptotic safety: Examples

Examples:

• Proton decay 

quark-lepton interactions that mediate proton decay: gqqql ∼ gqqql * + c (k ⋅ ℓfund)−θqqql

protected by U(1)Baryon

with θqqql = − 2 −
29

15π
G* + . . .

[AE, Ray ’23]
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• Higgs portal to dark scalar 

 with Higgs field  and dark scalar :    with λH H†H ϕ2 H ϕ λH = λH * + c (k ⋅ ℓfund)−θλH θλH
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• Axion-like-particle coupling to photon 

 with axion-like particle  and electromagnetic field strength :    with ga a ⋅ FμνF̃μν a Fμν ga = ga * + c (k ⋅ ℓfund)−θga θga
= − 2 +

G
π

[de Brito, AE, Lino dos Santos ’21]protected by shift symmetry a → a + s

An intermediate, approximately asymptotically safe regime* 

• extends the lifetime of the proton 

• decouples dark scalars from the Higgs field 

• decouples axion-like-particles from the photon 

• … 

* within the systematic uncertainties of our calculations

g2(k) = g2, *+c (k ⋅ ℓfund)−θ



Causality bounds


Causality bounds (no detectable propagation outside the light cone) 




Apply to photons in asymptotically safe gravity:

• assume that can Wick-rotate action

• start at interacting fixed point and integrate to low : 

use that  are irrelevant and thus calculable

• gravity fluctuations decouple dynamically at Planck scale
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Effective-Field-Theory consistency and the asymptotically safe swampland

Asymptotically safe gravity induces higher-order interactions


Example: (Abelian vector fields) 


in the presence of gravity: 

ℒk =
Zk

4
F2 +
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k4 (F2)2 +
h2
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Apply to photons in asymptotically safe gravity:

• assume that can Wick-rotate action

• start at interacting fixed point and integrate to low : 

use that  are irrelevant and thus calculable

• gravity fluctuations decouple dynamically at Planck scale
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[AE, Oodgard Pedersen, Schiffer ’24; see also Knorr, Platania ’24] 
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Summary

• Goal: understand the swampland as part of an effort to develop phenomenology of quantum gravity


• Question: is there an absolute swampland (shared between QG approaches) or is the swampland even universal

(i.e., no relative swampland outside the absolute swampland)?


• Status: string-inspired swampland may (in part) differ from relative swampland of asymptotic safety

(no-global symmetries conjecture, weak-gravity conjecture, de Sitter conjecture)


• universality in the swampland may be generated by asymptotic safety as intermediate regime

(proton lifetime extended, Higgs portal coupling switched off, axion-like-particle- photon coupling driven to zero)
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• …more to come


