The universal swampland

Workshop on quantum gravity across all scales Erlangen, May 20, 2025

Astrid Eichhorn, Heidelberg University

Space of all effective field theories of gravity and matter (e.g., GR+Standard Model,

Beyond Standard Model,

dark-energy models...)

Space of all effective field theories of gravity and matter (e.g., GR+Standard Model, Beyond Standard Model,

dark-energy models...)

Landscape

effective field theories that are ultraviolet completed by quantum gravity

Swampland

field theories that are **not** ultraviolet completed by quantum gravity

Why is this relevant?

- ulletUV completion with quantum gravity as a selection principle

Landscape effective field theories that are ultraviolet completed by quantum gravity

Swampland

field theories that are **not** ultraviolet completed by quantum gravity

phenomenological model building (e.g., dark matter, neutrino masses, modified gravity...):

• observational tests of quantum gravity: swampland properties testable at $\ell \gg \ell_{\text{Planck}}$ ($E \ll M_{\text{Planck}}$)

Why is this relevant?

- \bullet UV completion with quantum gravity as a selection principle

phenomenological model building (e.g., dark matter, neutrino masses, modified gravity...):

• observational tests of quantum gravity: swampland properties testable at $\ell \gg \ell_{\text{Planck}}$ ($E \ll M_{\text{Planck}}$)

Relative swamp of given QG theory: Swamp specific to that theory

LQG swamp

[AE, Hebecker, Pawlowski, Walcher '24]

LQG swamp

Universal swamp: intersection of all swamps = union of all swamps

LQG swamp

Universal swamp: intersection of all swamps = union of all swamps

Is the swamp universal?

[AE, Hebecker, Pawlowski, Walcher '24]

What is known about the swamp?

Absolute swamp (conjectural)

String-inspired swampland conjectures

[Vafa '05; Ooguri, Vafa '07...]

reviews: Brennan, Carta, Vafa '17; Palti '19; Van Beest, Calderon-Infante, Mirfendereski, Valenzuela '22; Graña, Herraez '21; Agmon, Bedroya, Kang, Vafa '22

Relative swamps

Concrete effective field theories in specific string-theory settings

Concrete effective field theories in asymptotic safety

Few hints about properties of matter in LQG, causal sets, EDTs...

-

What is known about the swamp?

Absolute swamp (conjectural)

String-inspired swampland conjectures

[Vafa '05; Ooguri, Vafa '07...]

reviews: Brennan, Carta, Vafa '17; Palti '19; Van Beest, Calderon-Infante, Mirfendereski, Valenzuela '22; Graña, Herraez '21; Agmon, Bedroya, Kang, Vafa '22

Relative swamps

Concrete effective field theories in specific string-theory settings

Concrete effective field theories in asymptotic safety

Few hints about properties of matter in LQG, causal sets, EDTs...

-

String-inspired swampland conjectures in the light of asymptotic safety

Asymptotic safety in gravity-matter systems

- Scale symmetry at (trans-) Planckian scales
- Compelling evidence with Standard Model-like matter sectors [review of current status: AE, Schiffer '22]
- Open questions: Lorentzian signature, unitarity under investigation [e.g., Fehre, Litim, Pawlowski, Reichert '21; Platania '22; Saueressig, Wang '23]

Asymptotic safety in gravity-matter systems

- Scale symmetry at (trans-) Planckian scales
- Compelling evidence with Standard Model-like matter sectors [review of current status: AE, Schiffer '22]
- Open questions: Lorentzian signature, unitarity under investigation [e.g., Fehre, Litim, Pawlowski, Reichert '21; Platania '22; Saueressig, Wang '23]

Predictions for effective field theories at the Planck scale: Example: Standard Model

- top Yukawa coupling bound from above [AE, Held '17]
- **bottom Yukawa coupling bound from above** [AE, Held '18]
- hypercharge coupling bound from above[AE, Versteegen '17]in $d \approx 4$ dimensions[AE, Schiffer '19]
- Higgs quartic coupling predicted ($M_{\rm Higgs} \approx 12 {\rm X~GeV}$)

[Shaposhnikov, Wetterich '09]

Neutrino Yukawa couplings driven towards small values [Held PhD thesis '19; Kowalska et al '22; AE, Held '22]

Asymptotic safety in gravity-matter systems

- Scale symmetry at (trans-) Planckian scales \bullet
- Compelling evidence with Standard Model-like matter sectors [review of current status: AE, Schiffer '22]
- Open questions: Lorentzian signature, unitarity under investigation [e.g., Fehre, Litim, Pawlowski, Reichert '21; Platania '22; Saueressig, Wang '23]

Origin of predictions at the Planck scale

0.05

0.04 Quantum fluctuations screen or antiscreen interactions, e.g., 0.03

В 0.02

QED:
$$\beta_e = k \partial_k e(k) = \frac{1}{12\pi^2} e^3 + \dots$$
 0.01

→
$$e(k)$$
 decreases as k is lowered
QCD: $\beta_g = k \partial_k g(k) = -\frac{7}{16\pi^2}g^3 + ...$
→ $g(k)$ increases as k is lowered

Asymptotic safety in gravity-matter systems

- Scale symmetry at (trans-) Planckian scales \bullet
- Compelling evidence with Standard Model-like matter sectors [review of current status: AE, Schiffer '22]
- Open questions: Lorentzian signature, unitarity under investigation [e.g., Fehre, Litim, Pawlowski, Reichert '21; Platania '22; Saueressig, Wang '23]

Origin of predictions at the Planck scale

0.05

0.04 Quantum fluctuations screen or antiscreen interactions, e.g., 0.03

В 0.02

QED:
$$\beta_e = k \partial_k e(k) = \frac{1}{12\pi^2} e^3 + \dots$$
 0.01

→
$$e(k)$$
 decreases as k is lowered
QCD: $\beta_g = k \partial_k g(k) = -\frac{7}{16\pi^2}g^3 + ...$
→ $g(k)$ increases as k is lowered

How non-perturbative is the fixed point?

Image Credit: NASA/CXC/M.Weiss

How non-perturbative is the fixed point?

Image Credit: NASA/CXC/M.Weiss

 g_*

or

?

metric propagator:

How non-perturbative is the fixed point?

Image Credit: NASA/CXC/M.Weiss

or

?

- (Gaussian) fixed point

metric propagator:

Key property: near-perturbative free parameters \simeq dimension-4-interactions similar set as free parameters at perturbative

String-inspired swampland conjectures in the light of asymptotic safety

symmet	ries	
d gravity		
Sitter		

No-global symmetries conjecture:

[Banks, Dixon '88; Giddings, Strominger '88; Abbott, Wise '89; Kallosh, Linde, Linde, Susskind '95....]

No-global symmetries conjecture:

[Banks, Dixon '88; Giddings, Strominger '88; Abbott, Wise '89; Kallosh, Linde, Linde, Susskind '95....]

1) Black-hole spacetimes violate conservation of global charges

black hole

particle w. global charge

with Hawking entropy

black hole undergoes complete Hawking evaporation (no remnants)

No-global symmetries conjecture:

[Banks, Dixon '88; Giddings, Strominger '88; Abbott, Wise '89; Kallosh, Linde, Linde, Susskind '95....]

1) Black-hole spacetimes violate conservation of global charges

black hole undergoes complete Hawking evaporation (no remnants)

with Hawking entropy

2) Gravity-matter path integral contains black-hole configurations

 \Rightarrow effective theory for matter has no conserved global charges

No-global symmetries conjecture:

[Banks, Dixon '88; Giddings, Strominger '88; Abbott, Wise '89; Kallosh, Linde, Linde, Susskind '95....]

1) Black-hole spacetimes violate conservation of global charges

black hole

global charge

black hole undergoes complete Hawking evaporation (no remnants)

with Hawking entropy

- 2) Gravity-matter path integral contains black-hole configurations
- \Rightarrow effective theory for matter has no conserved global charges

But: explicit calculations in asymptotic safety:

No interactions are generated by gravity which violate global symmetries of matter fields

[AE '12; AE, Held '17; de Brito, AE, Lino dos Santos '20, Laporte, Pereira, Saueressig, Wang '21,... (full list in review AE, Schiffer '22]

No-global symmetries conjecture:

[Banks, Dixon '88; Giddings, Strominger '88; Abbott, Wise '89; Kallosh, Linde, Linde, Susskind '95....]

1) Black-hole spacetimes violate conservation of global charges

black hole

global charge

black hole undergoes complete Hawking evaporation (no remnants)

with Hawking entropy

- 2) Gravity-matter path integral contains black-hole configurations
- \Rightarrow effective theory for matter has no conserved global charges

But: explicit calculations in asymptotic safety:

No interactions are generated by gravity which violate global symmetries of matter fields

[AE '12; AE, Held '17; de Brito, AE, Lino dos Santos '20, Laporte, Pereira, Saueressig, Wang '21,... (full list in review AE, Schiffer '22]

What gives?

No-global symmetries conjecture:

[Banks, Dixon '88; Giddings, Strominger '88; Abbott, Wise '89; Kallosh, Linde, Linde, Susskind '95....]

1) Black-hole spacetimes violate conservation of global charges

black hole

global charge

black hole undergoes complete Hawking evaporation (no remnants)

with Hawking entropy

- 2) Gravity-matter path integral contains black-hole configurations
- \Rightarrow effective theory for matter has no conserved global charges

But: explicit calculations in asymptotic safety:

No interactions are generated by gravity which violate global symmetries of matter fields

[AE '12; AE, Held '17; de Brito, AE, Lino dos Santos '20, Laporte, Pereira, Saueressig, Wang '21,... (full list in review AE, Schiffer '22]

What gives?

Possibility 1: black-hole configurations not adequately accounted for in functional RG (due to Euclidean signature?)

(can numerical approaches to the PI help?)

No-global symmetries conjecture:

[Banks, Dixon '88; Giddings, Strominger '88; Abbott, Wise '89; Kallosh, Linde, Linde, Susskind '95

1) Black-hole spacetimes violate conservation of global charges

black hole

particle w. global charge

black hole undergoes complet Hawking evaporation (no remr

with Hawking entropy

- 2) Gravity-matter path integral contains black-hole configuration
- \Rightarrow effective theory for matter has no conserved global charges

But: explicit calculations in asymptotic safety:

No interactions are generated by gravity which violate global symmetries of matter fields

[AE '12; AE, Held '17; de Brito, AE, Lino dos Santos '20, Laporte, Pereira, Saueressig, Wang '21,... (full list in review AE, Schiffer '22]

ō]	What gives?
	Possibility 1: black-hole configurations not adequately accounted for in functional RG (due to Euclidean signature)
/	(can numerical approaches to the PI help?)
te	Possibility 2: black holes in asymptotic safety work differer
nants)	Asymptotic safety or standard black-hole thermodynamics
IS	[Basile, Knorr, Platania, Schiffer '25]

No-global symmetries conjecture:

[Banks, Dixon '88; Giddings, Strominger '88; Abbott, Wise '89; Kallosh, Linde, Linde, Susskind '95

1) Black-hole spacetimes violate conservation of global charges

black hole

particle w. global charge

black hole undergoes complete Hawking evaporation (no remn

with Hawking entropy

- 2) Gravity-matter path integral contains black-hole configurations
- \Rightarrow effective theory for matter has no conserved global charges

But: explicit calculations in asymptotic safety:

No interactions are generated by gravity which violate global symmetries of matter fields

[AE '12; AE, Held '17; de Brito, AE, Lino dos Santos '20, Laporte, Pereira, Saueressig, Wang '21,... (full list in review AE, Schiffer '22]

5]	What gives?
	Possibility 1: black-hole configurations not adequately accounted for in functional RG (due to Euclidean signature)
,	(can numerical approaches to the PI help?)
e	Possibility 2: black holes in asymptotic safety work differer
nants)	Asymptotic safety or standard black-hole thermodynamics
S	[Basile, Knorr, Platania, Schiffer 25]
	Possibility 2a: remnants asymptotic-safety inspired black holes have vanishing

temperature at Planckian mass [Bonanno, Reuter '06]

No-global symmetries conjecture:

[Banks, Dixon '88; Giddings, Strominger '88; Abbott, Wise '89; Kallosh, Linde, Linde, Susskind '95

1) Black-hole spacetimes violate conservation of global charges

black hole

particle w. global charge

black hole undergoes complete Hawking evaporation (no remn

with Hawking entropy

- 2) Gravity-matter path integral contains black-hole configurations
- \Rightarrow effective theory for matter has no conserved global charges

But: explicit calculations in asymptotic safety:

No interactions are generated by gravity which violate global symmetries of matter fields

[AE '12; AE, Held '17; de Brito, AE, Lino dos Santos '20, Laporte, Pereira, Saueressig, Wang '21,... (full list in review AE, Schiffer '22]

]	What gives?
	Possibility 1: black-hole configurations not adequately accounted for in functional RG (due to Euclidean signature)
	(can numerical approaches to the PI help?)
е	Possibility 2: black holes in asymptotic safety work differer
ants)	Asymptotic safety or standard black-hole thermodynamics [Basile, Knorr, Platania, Schiffer '25]
5	Possibility 2b: black holes dynamically suppressed in path is $\int \mathscr{D}g_{\mu\nu}e^{iS}$: destructive interference for configurations with R

No-global symmetries conjecture:

[Banks, Dixon '88; Giddings, Strominger '88; Abbott, Wise '89; Kallosh, Linde, Linde, Susskind '95.

1) Black-hole spacetimes violate conservation of global charges

black hole

particle w. global charge

black hole undergoes complete Hawking evaporation (no remna

with Hawking entropy

- 2) Gravity-matter path integral contains black-hole configurations
- \Rightarrow effective theory for matter has no conserved global charges

But: explicit calculations in asymptotic safety:

No interactions are generated by gravity which violate global symmetries of matter fields

[AE '12; AE, Held '17; de Brito, AE, Lino dos Santos '20, Laporte, Pereira, Saueressig, Wang '21,... (full list in review AE, Schiffer '22]

]	What gives?
	Possibility 1: black-hole configurations not adequately accounted for in functional RG (due to Euclidean signature)
	(can numerical approaches to the PI help?)
e	Possibility 2: black holes in asymptotic safety work differer
ants) S	Asymptotic safety or standard black-hole thermodynamics [Basile, Knorr, Platania, Schiffer '25]
_	Possibility 2b: black holes dynamically suppressed in path i
	$\int \mathscr{D}g_{\mu\nu}e^{iS}$: destructive interference for configurations with S
	Weyl tensor
	$S = \ldots + d^4 x_1 \sqrt{g} C^2 \rightarrow \infty$ for singular black holes

[Borissova, AE '20; Borisssova '23]

No-global symmetries conjecture:

[Banks, Dixon '88; Giddings, Strominger '88; Abbott, Wise '89; Kallosh, Linde, Linde, Susskind '95

1) Black-hole spacetimes violate conservation of global charges

black hole

global charge

black hole undergoes complete Hawking evaporation (no remna

with Hawking entropy

- 2) Gravity-matter path integral contains black-hole configurations
- \Rightarrow effective theory for matter has no conserved global charges

But: explicit calculations in asymptotic safety:

No interactions are generated by gravity which violate global symmetries of matter fields

[AE '12; AE, Held '17; de Brito, AE, Lino dos Santos '20, Laporte, Pereira, Saueressig, Wang '21,... (full list in review AE, Schiffer '22]

]	What gives?
	Possibility 1: black-hole configurations not adequately accounted for in functional RG (due to Euclidean signature?)
	(can numerical approaches to the PI help?)
е	Possibility 2: black holes in asymptotic safety work differently
ants) S	Asymptotic safety or standard black-hole thermodynamics? [Basile, Knorr, Platania, Schiffer '25]
-	Possibility 2b: black holes dynamically suppressed in path integral f
	$\int \mathscr{D}g_{\mu\nu}e^{iS}$: destructive interference for configurations with $S \to \infty$
	Weyl tensor
	$S = \dots + \int d^4x \sqrt{g} C^2 \rightarrow \infty$ for singular black holes [Borissova, AE '20; Borisssova '23]
	$S = \ldots + \int d^4x \sqrt{-g} \frac{(C^2)^8}{4C^2(\nabla_\mu C)^2 - (\nabla_\mu C^2)^2} \to \infty \text{ at the horizon}$

Borissova, AE, Ray '24

No-global symmetries conjecture:

[Banks, Dixon '88; Giddings, Strominger '88; Abbott, Wise '89; Kallosh, Linde, Linde, Susskind '95

1) Black-hole spacetimes violate conservation of global charges

black hole

global charge

black hole undergoes complete Hawking evaporation (no remna

with Hawking entropy

- 2) Gravity-matter path integral contains black-hole configurations
- \Rightarrow effective theory for matter has no conserved global charges

But: explicit calculations in asymptotic safety:

No interactions are generated by gravity which violate global symmetries of matter fields

[AE '12; AE, Held '17; de Brito, AE, Lino dos Santos '20, Laporte, Pereira, Saueressig, Wang '21,... (full list in review AE, Schiffer '22]

]	What gives?
	Possibility 1: black-hole configurations not adequately accounted for in functional RG (due to Euclidean signature?
	(can numerical approaches to the PI help?)
e ants)	Possibility 2: black holes in asymptotic safety work differen
	Asymptotic safety or standard black-hole thermodynamics?
	[Basile, Knorr, Platania, Schiffer '25]

[AE, Hebecker, Pawlowski, Walcher '24]

Weak-gravity conjecture:
$$\frac{m}{M_{\rm Planck}} \leq e \, q \, \sqrt{2}$$
 [Ar

rkani-Hamed, Motl, Nicolis, Vafa '07]

Motivation: If global symmetries excluded, then the limit of vanishing gauge coupling cannot be taken

Weak-gravity conjecture:
$$\frac{m}{M_{\rm Planck}} \leq e \, q \, \sqrt{2}$$
 [Arkani-Hamed, More

Motivation: If global symmetries excluded, then the limit of vanishing gauge coupling cannot be taken

Asymptotic safety: upper bound (not lower bound) on the gauge coupling

otl, Nicolis, Vafa '07]

$$\beta_{g_y} = k\partial_k g_y(k) = -f_g g_y + \frac{41}{6 \cdot 16\pi^2} g_y^3 + \dots$$

$$f_g \ge 0 \text{ for } k \ge M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

$$f_g \to 0 \text{ for } k \le M_{\text{Plat}}$$

Weak-gravity conjecture:
$$\frac{m}{M_{\rm Planck}} \leq e \, q \, \sqrt{2}$$
 [Arkani-Hamed, More

Motivation: If global symmetries excluded, then the limit of vanishing gauge coupling cannot be taken

Asymptotic safety: upper bound (not lower bound) on the gauge coupling

otl, Nicolis, Vafa '07]

$$\beta_{g_y} = k \partial_k g_y(k) = -f_g g_y + \frac{41}{6 \cdot 16\pi^2} g_y^3 + \dots$$

 $f_g \ge 0$ for $k \ge M_{\text{Planck}}$

$$f_g \rightarrow 0$$
 for $k \leq M_{\text{Plan}}$

[AE, Hebecker, Pawlowski, Walcher '24]

de Sitter conjecture

De Sitter spacetime is not compatible with quantum gravity and any scalar potential V must not be too flat: $|\nabla V| \ge \frac{c}{M_{\text{Planck}}}V$

[Ooguri, Palti, Shiu, Vafa '18]

de Sitter conjecture

De Sitter spacetime is not compatible with quantum gravity and any scalar potential V must not be too flat: ∇V *M*_{Planck}

Asymptotic safety: fixed point connected to positive cosmological constant at large scales

[de Alwis, AE, Held, Pawlowski, Schiffer, Versteegen '19]

[Ooguri, Palti, Shiu, Vafa '18]

 $|\nabla V| \geq$ De Sitter spacetime is not compatible with quantum gravity and any scalar potential V must not be too flat: *M*_{Planck}

[de Alwis, AE, Held, Pawlowski, Schiffer, Versteegen '19]

de Sitter conjecture

[Ooguri, Palti, Shiu, Vafa '18]

 $|\nabla V| \geq$ De Sitter spacetime is not compatible with quantum gravity and any scalar potential V must not be too flat: *M*_{Planck}

[de Alwis, AE, Held, Pawlowski, Schiffer, Versteegen '19]

de Sitter conjecture

[Ooguri, Palti, Shiu, Vafa '18]

[AE, Hebecker, Pawlowski, Walcher '24]

So is there no absolute swamp that is shared between distinct approaches?

[AE, Hebecker, Pawlowski, Walcher '24]

Main idea: Asymptotic safety in an intermediate regime (effective asymptotic safety)

increasing energy scales

[de Alwis, AE, Held, Pawlowski, Schiffer, Versteegen '19]

Main idea: Asymptotic safety in an intermediate regime (effective asymptotic safety)

increasing energy scales

[de Alwis, AE, Held, Pawlowski, Schiffer, Versteegen '19]

Main idea: Asymptotic safety in an intermediate regime (effective asymptotic safety)

increasing energy scales

[de Alwis, AE, Held, Pawlowski, Schiffer, Versteegen '19]

Swamplands with effective asymptotic safety

 $M_{\rm Planck} \ll \ell_{\rm fund}^{-1}$

QG theory X swamp AS swamp

 $\mathcal{\ell}_{\text{fund}}^{-1} = 10^x M_{\text{Planck}}, x > 0$

Main idea: Asymptotic safety in an intermediate regime (effective asymptotic safety)

increasing energy scales

[de Alwis, AE, Held, Pawlowski, Schiffer, Versteegen '19]

Swamplands with effective asymptotic safety $M_{\rm Planck} \ll \ell_{\rm fund}^{-1}$

Renormalization Group flow: arrows point towards decreasing energy scales

Renormalization Group flow: arrows point towards decreasing energy scales

*8*₂*

 g_2

Renormalization Group flow: arrows point towards decreasing energy scales **Universality:**

Different initial conditions for infrared attractive couplings are mapped to ~ fixed-point value

$$g_{2}(k) = g_{2,*} + c \left(k \cdot \ell_{\text{fund}} \right)^{-\theta}$$
critical exponent
$$\theta < 0 \text{ for infrared attractive confree parameter}$$
(initial condition at $g_{2}(\ell_{\text{fund}}^{-1})$)

 g_{2*}

 g_2

Renormalization Group flow: arrows point towards decreasing energy scales **Universality:**

Different initial conditions for infrared attractive couplings are mapped to ~ fixed-point value

$$g_{2}(k) = g_{2,*} + c \left(k \cdot \ell_{\text{fund}} \right)^{-\theta}$$
critical exponent
$$\theta < 0 \text{ for infrared attractive confree parameter}$$
(initial condition at $g_{2}(\ell_{\text{fund}}^{-1})$)

To delineate universal part of the swamp:

 \rightarrow which interactions correspond to infrared attractive couplings?

 \rightarrow what are their fixed-point values?

Universality from effective asymptotic safety: mechanism in more detail

$$g_2(k) = g_{2,*} + c \left(k \cdot \ell_{\text{fund}} \right)^{-\theta}$$

free parameter (initial conditi

To delineate universal part of the swamp:

- \rightarrow which interactions correspond to infrared attractive couplings?
- \rightarrow what are their fixed-point values?

er ion at
$$g_2(\ell_{\mathrm{fund}}^{-1})$$
)

(Tentative) fixed-point properties:

 \rightarrow near-perturbative: dimension $\gtrsim 5$ interactions,

$$\Delta_{\theta} = \sqrt{\frac{\sum_{i} \left(\text{Re}(\theta^{(i)}) - \theta_{\text{Gauss}} \right)^{2}}{\sum_{i}}}$$

Universality from effective asymptotic safety: mechanism in more detail

$$g_2(k) = g_{2,*} + c (k)$$

free parameter

To delineate universal part of the swamp:

- \rightarrow which interactions correspond to infrared attractive couplings?
- \rightarrow what are their fixed-point values?

 $k \cdot \ell_{\text{fund}})^{-\theta}$

critical exponent $\theta < 0$: for couplings belonging to dimension- \gtrsim 5- interactions (initial condition at $g_2(\mathscr{C}_{fund}^{-1})$)

(Tentative) fixed-point properties:

 \rightarrow near-perturbative: dimension ≥ 5 interactions,

Universality from effective asymptotic safety: mechanism in more detail

$$g_2(k) = g_{2,*} + c \ (k$$

free parameter

To delineate universal part of the swamp:

- \rightarrow near-perturbative: dimension $\gtrsim 5$ interactions \rightarrow which interactions correspond to infrared attractive couplings?
- \rightarrow what are their fixed-point values?

 $k \cdot \ell_{\text{fund}})^{-\theta}$

critical exponent $\theta < 0$: for couplings belonging to dimension- \gtrsim 5- interactions (initial condition at $g_2(\ell_{\text{fund}}^{-1})$)

(Tentative) fixed-point properties:

 \rightarrow global symmetries: zero if symmetry-protected

for couplings belonging to dimension- \gtrsim 5- interactions

(initial condition at $g_2(\mathscr{C}_{\text{fund}}^{-1})$)

for couplings belonging to dimension- \gtrsim 5- interactions

protected by $U(1)_{\text{Barvon}}$

[AE, Ray '23]

Higgs portal to dark scalar

 $\lambda_H H^{\dagger} H \phi^2$ with Higgs field H and dark scalar ϕ : $\lambda_H = \lambda_{H^*} + c \left(k \cdot \ell_{\text{fund}}\right)^{-\theta_{\lambda_H}}$ with $\theta_{\lambda_H} = -\frac{33}{18\pi}G_*$ protected by shift symmetry $\phi \rightarrow \phi + s$

for couplings belonging to dimension- \gtrsim 5- interactions

$$q_{qql} \sim g_{qqql} * + c \left(k \cdot \ell_{\text{fund}} \right)^{-\theta_{qqql}}$$

rotected by $U(1)_{\text{Baryon}}$

with
$$\theta_{qqql} = -2 - \frac{29}{15\pi}G_* +$$

[AE, Ray '23]

[AE, Hamada, Lumma, Yamada '18]

Higgs portal to dark scalar

 $\lambda_H H^{\dagger} H \phi^2$ with Higgs field H and dark scalar ϕ : $\lambda_H = \lambda_{H^*} + c \left(k \cdot \ell_{\text{fund}}\right)^{-\theta_{\lambda_H}}$ with $\theta_{\lambda_H} = -\frac{33}{18\pi}G_*$

Axion-like-particle coupling to photon

 $g_a a \cdot F_{\mu\nu} \tilde{F}^{\mu\nu}$ with axion-like particle a and electromagnetic field strength $F_{\mu\nu}$: $g_a = g_{a*} + c \left(k \cdot \ell_{\text{fund}}\right)^{-\theta_{g_a}}$ with $\theta_{g_a} = -2 + \frac{G}{\pi}$ protected by shift symmetry $a \to a + s$

for couplings belonging to dimension- \gtrsim 5- interactions

$$g_{qqql} \sim g_{qqql*} + c \left(k \cdot \ell_{\text{fund}} \right)^{-\theta_{qqql}}$$
wordered by $U(1)_{\text{Baryon}}$

with
$$\theta_{qqql} = -2 - \frac{29}{15\pi}G_* +$$

[AE, Ray '23]

[AE, Hamada, Lumma, Yamada '18]

protected by shift symmetry $\phi \rightarrow \phi + s$

• • •

 $g_a a \cdot F_{\mu\nu} \tilde{F}^{\mu\nu}$ with axion-like particle a and electromagnetic field strength $F_{\mu\nu}$: $g_a = g_{a*} + c \left(k \cdot \ell_{\text{fund}}\right)^{-\theta_{g_a}}$ with $\theta_{g_a} = -2 + \frac{G}{\pi}$ protected by shift symmetry $a \to a + s$

for couplings belonging to dimension- \gtrsim 5- interactions

An intermediate, approximately asymptotically safe regime* with $\theta_{qqql} = -2 - \frac{29}{15\pi}G_* + \dots$ [AE, Ray '23] 18π [AE, Hamada, Lumma, Yamada '18] S

Effective-Field-Theory consistency and the asymptotically safe swampland

Asymptotically safe gravity induces higher-order interactions [AE, Gies '11; AE, 12]

Example: (Abelian vector fields) $\mathscr{L}_k = \frac{Z_k}{4}F^2 + \frac{W_2}{k^4}(F^2)^2 + \frac{h_2}{k^4}F^4$

in the presence of gravity: $w_2 \neq 0, h_2 \neq 0$ [Christiansen, AE 17; AE, Schiffer '19; AE, Kwapisz, Schiffer '21]

Causality bounds

Causality bounds (no detectable propagation outside the light cone) $\left|\frac{w_2}{h_2} > -\frac{3}{4}, \frac{4w_2 + 3h_2}{|4w_2 + h_2|} > 1\right|$

[Carillo Gonzalez, de Rham, Jaitly, Pozsgay, Tokareva '23]

Effective-Field-Theory consistency and the asymptotically safe swampland

Asymptotically safe gravity induces higher-order interactions [AE, Gies '11; AE, 12]

Example: (Abelian vector fields) $\mathscr{L}_k = \frac{Z_k}{4}F^2 + \frac{W_2}{k^4}(F^2)^2 + \frac{h_2}{k^4}F^4$

in the presence of gravity: $w_2 \neq 0, h_2 \neq 0$ [Christiansen, AE 17; AE, Schiffer '19; AE, Kwapisz, Schiffer '21]

Causality bounds

Causality bounds (no detectable propagation outside the light cone) $\left|\frac{w_2}{h_2} > -\frac{3}{4}, \frac{4w_2 + 3h_2}{|4w_2 + h_2|} > 1\right|$

[Carillo Gonzalez, de Rham, Jaitly, Pozsgay, Tokareva '23]

Are causality bounds violated only inside the swampland?

Effective-Field-Theory consistency and the asymptotically safe swampland

 $\tilde{4}^{22}$

Asymptotically safe gravity induces higher-order interactions [AE, Gies '11; AE, 12]

Example: (Abelian vector fields) $\mathscr{L}_k = \frac{Z_k}{\Delta} F^2 + \frac{W_2}{k^4} (F^2)^2 + \frac{h_2}{k^4} F^4$

in the presence of gravity: $w_2 \neq 0, h_2 \neq 0$ [Christiansen, AE 17; AE, Schiffer '19; AE, Kwapisz, Schiffer '21]

Causality bounds in asymptotically safe gravity

Causality bounds (no detectable propagation outside the light cone) $\left|\frac{w_2}{h_2} > -\frac{3}{4}, \frac{4w_2 + 3h_2}{|4w_2 + h_2|} > 1\right|$

Apply to photons in asymptotically safe gravity:

- assume that can Wick-rotate action
- start at interacting fixed point and integrate to low k: use that $w_2(k)$, $h_2(k)$ are irrelevant and thus calculable
- gravity fluctuations decouple dynamically at Planck scale

[AE, Oodgard Pedersen, Schiffer '24; see also Knorr, Platania '24]

- (i.e., no relative swampland outside the absolute swampland)?
- (no-global symmetries conjecture, weak-gravity conjecture, de Sitter conjecture)
- universality in the swampland may be generated by asymptotic safety as intermediate regime

Summary

• Goal: understand the swampland as part of an effort to develop phenomenology of quantum gravity

• Question: is there an absolute swampland (shared between QG approaches) or is the swampland even universal

• Status: string-inspired swampland may (in part) differ from relative swampland of asymptotic safety

(proton lifetime extended, Higgs portal coupling switched off, axion-like-particle- photon coupling driven to zero)

- (i.e., no relative swampland outside the absolute swampland)?
- (no-global symmetries conjecture, weak-gravity conjecture, de Sitter conjecture)
- universality in the swampland may be generated by asymptotic safety as intermediate regime
- ...more to come

Summary

• Goal: understand the swampland as part of an effort to develop phenomenology of quantum gravity

• Question: is there an absolute swampland (shared between QG approaches) or is the swampland even universal

• Status: string-inspired swampland may (in part) differ from relative swampland of asymptotic safety

(proton lifetime extended, Higgs portal coupling switched off, axion-like-particle- photon coupling driven to zero)