Asymptotically Safe Quantum Gravity on foliated spacetimes

Frank Saueressig

Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen

F. Saueressig, J. Wang, arXiv:2306.10408

G. Korver, F. Saueressig, J. Wang, arXiv:2402.01260

F. Saueressig, J. Wang, arXiv:2501.03752

 FAU^2 workshop on quantum gravity across scales \$\$May 20^{\rm th}\$, 2025

motivation

2 basics of asymptotic safety

the renormalized graviton 2-point function

- phase diagram of the graviton mass
- IR fixed points
- results for Lorentzian signature
- summary and outlook

Motivation I: phenomenology from first principles

- graviton propagators in a flat background [today]
- tensor fluctuations in the CMB [future]

can we use these observations to constrain quantum gravity?

Asymptotic Safety transit: from Euclidean to Lorentzian signature

- ADM-decomposition providing a foliation of spacetime [E. Manrique, S. Rechenberger, F. Saueressig, arXiv:1102.5012]
- spectral functions on flat background

[J. Fehre, D. F. Litim, J. M. Pawlowski, M. Reichert, arXiv:2111.13232]

• algebraic quantum field theory + renormalization group

[E. D'Angelo, N. Drago, N. Pinamonti, K. Rejzner, arXiv:2202.07580]

Asymptotic Safety transit: from Euclidean to Lorentzian signature

- ADM-decomposition providing a foliation of spacetime [E. Manrique, S. Rechenberger, F. Saueressig, arXiv:1102.5012]
- spectral functions on flat background [J. Fehre, D. F. Litim, J. M. Pawlowski, M. Reichert, arXiv:2111.13232]
- algebraic quantum field theory + renormalization group
 [E. D'Angelo, N. Drago, N. Pinamonti, K. Reizner, arXiv:2202.07580]

natural connections:

• Causal Dynamical Triangulations (CDT)

[J. Ambjorn, R. Loll, arXiv:2401.09399]

canonical quantum gravity

[T. Thiemann, arXiv:2404.18220] [R. Ferrero, T. Thiemann, arXiv:2404.18224]

Basics of the

gravitational asymptotic safety program

Asymptotic Safety in the Handbook of Quantum Gravity

[editors: C. Bambi, L. Modesto and I.L. Shapiro, Springer Singapore] [R. Percacci - organizing the Asymptotic Safety Section]

- The Functional Renormalization Group in Quantum Gravity, F. Saueressig, arXiv:2302.14152
- Quantum Gravity from dynamical metric fluctuations, J.M. Pawlowski, M. Reichert, arXiv:2309.10785
- Asymptotic safety of gravity with matter, A. Eichhorn, M. Schiffer, arXiv:2212.07456
- Form Factors in Asymptotically Safe Quantum Gravity, B. Knorr, C. Ripken, F. Saueressig, arXiv:2210.16072
- The Functional f(R) Approximation, T.R. Morris, D. Stulga, arXiv:2210.11356
- Perturbative approaches to non-perturbative quantum gravity, R. Martini, G.P. Vacca, O. Zanusso, arXiv:2210.13910
- Quantum gravity and scale symmetry in cosmology, C. Wetterich, arXiv:2211.03596.
- Black Holes in Asymptotically Safe Gravity, A. Platania, arXiv:2302.04272.

• input

- a) field content(e.g., spacetime metric $g_{\mu\nu}$)b) symmetries(e.g., coordinate transformations)
- \bullet actions = combinations of interaction monomials ${\cal O}$
 - build from the field content
 - compatible with symmetries (e.g., $\mathcal{O}[g] = \int d^4 x \sqrt{gR}$)
- theory space = space containing all actions
 - coordinates: couplings $\{u_i\}$ (e.g., G, Λ)
- Wilsonian renormalization group flow:
 - couplings run when integrating out quantum fluctuations

(e.g., $k\partial_k u_i = \beta_i(\{u_i\})$)

The asymptotic safety conjecture

high-energy completion of gravity in d = 4controlled by an interacting renormalization group fixed point

The asymptotic safety conjecture

fixed point provides predictive power:

- fixed points are saddle points:
 - $\bullet\,$ relevant RG trajectories $\,$ = end at the fixed point in the UV
 - irrelevant RG trajectories = go somewhere else

Computing renormalization group flows

Wetterich equation

[C. Wetterich, Phys. Lett. **B301** (1993) 90] [M. Reuter, Phys. Rev. D **57** (1998) 971, hep-th/9605030]

$$k\partial_k\Gamma_k = rac{1}{2}\mathrm{Tr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k
ight)^{-1}k\partial_k\mathcal{R}_k
ight]$$

- flow equation for the effective average action Γ_k
- integrates out fluctuations shell-by-shell in momentum space

Wilsonian RG flow of the Einstein-Hilbert action

[M. Reuter, Phys.Rev.D 65 (2002) 065016]

Wilsonian RG flow of the Einstein-Hilbert action

[M. Reuter, Phys.Rev.D 65 (2002) 065016]

fixed point persists for a wide range of gravity-matter systems

[A. Eichhorn, Front.Astron.Space Sci. 5 (2019) 47]

Connection to classical general relativity

renormalization group flow connects classical and quantum phase:

• Newton's coupling changes with the coarse-graining scale k:

Asymptotic Safety - today

1 gravity has the interacting fixed point (Weinberg's conjecture)

Reuter fixed point

- 2 fixed point delivers predictive power
 - potential relations to couplings in particle physics
- I effective field theory: reached after crossover
- I profound consequences for cosmology and black holes

Asymptotic Safety - today

1 gravity has the interacting fixed point (Weinberg's conjecture)

Reuter fixed point

- 2 fixed point delivers predictive power
 - potential relations to couplings in particle physics
- I effective field theory: reached after crossover
- I profound consequences for cosmology and black holes

Asymptotic Safety

is an attractive Quantum Gravity program

Physics from the effective average action

physics should be analyzed based on $\Gamma = \lim_{k \to 0} \Gamma_k$

quantum field theory:

• all quantum fluctuations should be integrated out

conceptual consequences for the energy dependence of couplings:

- k-dependence is not observable
- energy-dependence of couplings \Longrightarrow form factors in Γ
 - Newton's coupling: no energy dependence
 - cosmological constant: no energy dependence
- resolves puzzle about gravity-mediated scattering processes

[J. Donoghue, Front. in Phys. 8 (2020) 56]

Asymptotic Safety

on foliated spacetimes

Equip spacetime with a foliation

Arnowitt-Deser-Misner (ADM) decomposition of the metric:

$$ds^{2} = g_{\mu\nu} dx^{\mu} dx^{\nu}$$
$$= -N^{2} dt^{2} + \sigma_{ij} \left(N^{i} dt + dy^{i}\right) \left(N^{j} dt + dy^{j}\right)$$

ADM formalism

virtues:

- allows to transit between Lorentzian and Euclidean signature
 - provides a preferred "time"-direction
- closely related to observables (Bardeen variables)

Where is the graviton?

• ADM-fields:
$$g_{\mu\nu} \mapsto \{N, N_i, \sigma_{ij}\}$$

introduce fluctuations in a flat background

$$\sigma_{ij} = \bar{\sigma}_{ij} + \hat{\sigma}_{ij}, \quad N_i = \bar{N}_i + \hat{N}_i, \quad N = \bar{N} + \hat{N}_i$$

with

$$\bar{\sigma}_{ij} = \delta_{ij}, \quad \bar{N} = 1, \quad \bar{N}_i = 0$$

• transverse-traceless decomposition of $\hat{\sigma}_{ij}$: ($\Delta = -\partial^2$)

$$\hat{\sigma}_{ij} = h_{ij} + \partial_i \frac{1}{\sqrt{\Delta}} v_j + \partial_j \frac{1}{\sqrt{\Delta}} v_i + \partial_i \partial_j \frac{1}{\Delta} E + \frac{1}{3} \delta_{ij} E + \frac{1}{3} \delta_{ij} \psi$$

- *h_{ij}* carries 2 degrees of freedom
- h_{ij} is gauge-invariant

Target: graviton-two point function

object of interest: 2-point correlation function of h_{ij}

$$\Gamma = \frac{1}{32\pi G} \int_{x} h_{ij} \left[-\partial^{2} + \underbrace{\mu^{2}}_{\text{graviton mass}} \right] h^{ij}$$

- gives the graviton propagator on a flat background
- variation with respect to $h_{ij} \Longrightarrow$ massive wave equation

$$\left(-\partial^2+\mu^2\right)\ h_{ij}=0$$

phenomenology: strong constraints on the graviton mass

$$\mu \lesssim 8.6 imes 10^{-24} \, \mathrm{eV}$$

left-hand side of the flow equation:

• 2-point correlation function of h_{ij}

$$\Gamma_k = \frac{1}{64\pi G_k} \int_p h_{ij} \left[p^2 + \mu_k^2 \right] h^{ij}$$

tracks the RG flow of two couplings:

- G_k : wave function renormalization
- μ_k^2 : graviton mass

physics: end-point of a RG trajectory (k = 0)

Flow of a two-point function

take two functional derivatives with respect to the graviton h_{ij} :

$$\partial_t \Gamma_k^{(2)} = \operatorname{STr} \left[\mathcal{G} \, \Gamma_k^{(3)} \, \mathcal{G} \, \Gamma_k^{(3)} \, \mathcal{G} \, \partial_t \mathcal{R}_k \right] - \frac{1}{2} \operatorname{STr} \left[\mathcal{G} \, \Gamma_k^{(4)} \, \mathcal{G} \, \partial_t \mathcal{R}_k \right] \,.$$

- \mathcal{G} : regulated propagator
- flow of $\Gamma_k^{(2)}$ determined by 3-point and 4-point vertex

! warning active !

technical interlude ahead

Let's talk about: gauge fixing

a) common choice: gauge-fixing lapse and shift

$$\hat{N}=0, \qquad \hat{N}_i=0$$

 \implies propagators for other fields are ill-defined

b) harmonic gauge condition (linearized; flat background)

$$\Gamma_{k}^{\rm gf} = \frac{1}{16\pi G_{k}} \int d\tau d\vec{y} \left[\delta^{ij} F_{i} F_{j} + F^{2} \right]$$

with

$$F = \partial_{\tau}\hat{N} + \partial^{i}\hat{N}_{i} - \frac{1}{2}\partial_{\tau}\psi$$
$$F_{i} = \partial_{\tau}\hat{N}_{i} + \partial_{i}\hat{N} - \frac{1}{2}\partial_{i}\psi + \partial^{j}\hat{\sigma}_{ij}$$

 \implies all propagators are relativistic!

fluctuation fields are defined via the linear split

$$N = \overline{N} + \hat{N}$$
, $N_i = \overline{N}_i + \hat{N}_i$, $\sigma_{ij} = \overline{\sigma}_{ij} + \hat{\sigma}_{ij}$

- a) gauge fixing ⇒ Lorentz-invariant 2-point functions
 3- and 4-point vertices break Lorentz invariance
- b) adding non-linear terms to split reorganizes vertex structure [F.S., J. Wang, in preparation]
 - \Longrightarrow Lorentz invariant flows for 2-point functions

Let's talk about: regulators $R_k(p^2)$

[J. Braun, et. al., arXiv:2206.10232]

- impossible to have all 3 criteria at once?
- regulators satisfying Finiteness & Causality less stable?

! warning stopped !

technical interlude done

flow of the graviton 2-point function fixed points, phase space, graviton mass

Closure of the flow equation

ansatz for Γ_k (gravity + scalar matter + U(1)-gauge fields): $\Gamma_k \simeq \Gamma_k^{\text{EH}} + \Gamma_k^{\text{gf}} + S^{\text{ghost}} + S^{\text{scalar}} + S^{\text{vector}}.$

where

$$\begin{split} \Gamma_{k}^{\text{EH}} &= \frac{1}{16\pi G_{k}} \int dt d^{3}y N \sqrt{\sigma} \left(K^{ij} K_{ij} - K^{2} - {}^{(3)} R + 2\Lambda_{k} \right) \\ S^{\text{scalar}} &= \frac{1}{2} \sum_{n=1}^{N_{s}} \int dt d^{3}y N \sqrt{\sigma} g^{\mu\nu} \left(\partial_{\mu} \phi \right) \left(\partial_{\nu} \phi \right) \\ S^{\text{vector}} &= \frac{1}{4} \sum_{n=1}^{N_{v}} \int dt d^{3}y N \sqrt{\sigma} F_{\mu\nu} F^{\alpha\beta} + S^{\text{gauge-fixing}} + S^{\text{ghosts}} \end{split}$$

• generates: graviton 2-point function + 3- and 4-point vertices

Beta functions and interacting fixed points

introduce dimensionless couplings

$$g_k = k^2 G_k$$
, $\lambda_k = k^{-2} \Lambda_k$, $\mu_k^2 = -2k^2 \lambda_k$

beta functions from evaluating the projected flow equation

$$k\partial_k\lambda_k = \beta_\lambda(g_k,\lambda_k;N_s,N_v), \qquad k\partial_kg_k = \beta_g(g_k,\lambda_k;N_s,N_v)$$

- depend on the number of matter fields N_s , N_v
- very complicated expressions

Beta functions and interacting fixed points

introduce dimensionless couplings

$$g_k = k^2 G_k$$
, $\lambda_k = k^{-2} \Lambda_k$, $\mu_k^2 = -2k^2 \lambda_k$

beta functions from evaluating the projected flow equation

$$k\partial_k\lambda_k = \beta_\lambda(g_k,\lambda_k;N_s,N_v), \qquad k\partial_kg_k = \beta_g(g_k,\lambda_k;N_s,N_v)$$

- depend on the number of matter fields N_s , N_v
- very complicated expressions

special interest: non-Gaussian fixed points (NGFPs)

$$\beta_g(g_*, \lambda_*) = 0, \quad \beta_\lambda(g_*, \lambda_*) = 0$$

• allow to take $k o \infty$ in a controlled way

Phase diagram I: pure gravity

• RG flow: dominated by NGFP, GFP, IR-FP

Phase diagram I: pure gravity

- RG flow: dominated by NGFP, GFP, IR-FP
- IR-FP is an attractor for $k \rightarrow 0$

 \implies zero renormalized graviton mass!

Fixed points in the presence of matter fields

- NGFP (Asymptotic Safety): exists in the orange region
- green line: NGFP annihilates into the complex plain

• qualitatively identical to the pure gravity case!

Phase diagram III: $N_s = 4$, $N_v = 10$

- NGFP has annihilated
- IR-FP persists also in the absence of a UV-completion
 - IR-FP: effective field theory effect

The transit to Lorentzian signature

Lorentzian Signature RG flows

[J. Wang, F.S., Phys.Rev.D 111 (2025) 106007, arXiv:2501.03752]

properties of the ADM-decomposition

- the foliation allows to decompose $p^{\mu} \mapsto \{ p^0, \vec{p} \}$
- we can use regulators $\mathcal{R}_k(\vec{p}^2)$
 - pro: does not modify causal structure of propagators
 - pro: traces are finite
 - con: regularization is not Lorentz covariant

[J. Wang, F.S., Phys.Rev.D 111 (2025) 106007, arXiv:2501.03752]

properties of the ADM-decomposition

- the foliation allows to decompose $p^{\mu} \mapsto \{ p^0, \vec{p} \}$
- we can use regulators $\mathcal{R}_k(\vec{p}^2)$
 - pro: does not modify causal structure of propagators
 - pro: traces are finite
 - con: regularization is not Lorentz covariant

analytic continuation of the Lapse function (no complex geometry)

$$N(t, \vec{y}) \mapsto iN(t, \vec{y})$$

[J. Wang, F.S., Phys.Rev.D 111 (2025) 106007, arXiv:2501.03752]

properties of the ADM-decomposition

- the foliation allows to decompose $p^{\mu} \mapsto \{ p^0, \vec{p} \}$
- we can use regulators $\mathcal{R}_k(\vec{p}^2)$
 - pro: does not modify causal structure of propagators
 - pro: traces are finite
 - con: regularization is not Lorentz covariant

analytic continuation of the Lapse function (no complex geometry)

$$N(t, \vec{y}) \mapsto iN(t, \vec{y})$$

! beta functions for both signatures are identical !

Lorentzian Signature RG flows: phase diagram

[J. Wang, F.S., Phys.Rev.D 111 (2025) 106007, arXiv:2501.03752]

- RG flow: dominated by UV-FP, GFP, IR-FP
- IR-FP is an attractor for $k \rightarrow 0$

Summary and Outlook

Summary

graviton 2-point function in the ADM-formalism:

$$\Gamma_k = \frac{1}{64\pi G_k} \int d^4 x \, h_{ij} \left[-\partial^2 + \mu_k^2 \right] \, h^{ij} \, .$$

remarkable properties of the RG flow:

- non-Gaussian fixed point: (high-energy completion)
 - exists for pure gravity
 - generalizes to gravity-matter systems (mild conditions)
- IR fixed point: (renormalized couplings)
 - yields $\mu^2 = 0$ dynamically
 - independent of UV-completion (EFT property)

Summary

graviton 2-point function in the ADM-formalism:

$$\Gamma_k = \frac{1}{64\pi G_k} \int d^4 x \, h_{ij} \left[-\partial^2 + \mu_k^2 \right] \, h^{ij} \, .$$

remarkable properties of the RG flow:

- non-Gaussian fixed point: (high-energy completion)
 - exists for pure gravity
 - generalizes to gravity-matter systems (mild conditions)
- IR fixed point: (renormalized couplings)
 - yields $\mu^2 = 0$ dynamically
 - independent of UV-completion (EFT property)

! identical results for Lorentzian signature !

phenomenology of cosmological observables:

- flat background \Longrightarrow cosmological background
- generalize momentum dependence of 2-point function
- 2-point correlators \implies 3-point correlators (non-Gaussianities)

new effects appearing at Lorentzian signature:

• study vacuum dependence of the Lorentzian flow equation

phenomenology of cosmological observables:

- flat background \implies cosmological background
- generalize momentum dependence of 2-point function
- 2-point correlators \implies 3-point correlators (non-Gaussianities)

new effects appearing at Lorentzian signature:

• study vacuum dependence of the Lorentzian flow equation

Questions?