

Constraining the Physics of Very-High-Energy Emission of Blazars through radio observations

Florian Eppel

JMU Würzburg & MPIfR Bonn

On behalf of AG Kadler: M. Kadler, J. Eich, L. Haury, J. Heßdörfer, D. Kirchner, L. Ricci, F. Rösch, W. Schulga, H. Shetgaonkar, C. Wendel, J. Wongphechauxsorn + many collaborators

Credit: Sophia Dagnello, NRAO/AUI/NSF

High-Energy Neutrinos

Map of High-Energy Neutrino Alerts

- Florian Eppel -

High-Energy Neutrinos

Map of High-Energy Neutrino Alerts

Where do high-energy neutrinos come from?

High-Energy Neutrinos

Map of High-Energy Neutrino Alerts

Where do high-energy neutrinos come from?

-> Some indications hint towards blazars!

What are the physics behind it?

TeV-detected sources

TeV-detected sources

TeV-detected sources

-> Extragalactic population dominated by blazars

Doppler Crisis

TeV-detected sources

Doppler Crisis

 Highly variable TeV-emission requires high Doppler factors up to D>40 (e.g., Tavecchio et al. 2010)

TeV-detected sources

Doppler Crisis

- Highly variable TeV-emission requires high Doppler factors up to D>40 (e.g., Tavecchio et al. 2010)
- Radio observations suggest low jet speeds for HBLs, indicative of low Doppler factors

TeV-detected sources

Doppler Crisis

- Highly variable TeV-emission requires high Doppler factors up to D>40 (e.g., Tavecchio et al. 2010)
- Radio observations suggest low jet speeds for HBLs, indicative of low Doppler factors

Possible Scenarios:

-> Spine-Sheath Structure (Ghisellini et al., 2005)

TeV-detected sources

Doppler Crisis

- Highly variable TeV-emission requires high Doppler factors up to D>40 (e.g., Tavecchio et al. 2010)
- Radio observations suggest low jet speeds for HBLs, indicative of low Doppler factors

Possible Scenarios:

- -> Spine-Sheath Structure (Ghisellini et al., 2005)
- -> Standing Recollimation Shocks (Hervet et al., 2019)

Why Radio?

- Radio emission originates almost entirely from the plasma jet close to the central engine
- Synchrotron radiation from the jet/shocks helps to constrain models in MWL-studies
- Known correlation of high-energy and radio emission in blazars (e.g., Giroletti et al. 2016)
- Monitoring can yield important information about energy production and reasons for activity
- With VLBI, scales down to the the jet base can be investigated, as well as the jet-speed, jet-geometry, doppler factor and magnetic-field

15 GHz VLBA image of PG 1553+113 (Lico et al. 2020)

 Well studied HBL object with a known 2.2-year gamma-ray periodicity -> super massive binary blackhole candidate

- Well studied HBL object with a known 2.2-year gamma-ray periodicity -> super massive binary blackhole candidate
- Previous VLBI study by Lico et al. (2020) revealed possible jet wobbling and hints of limbbrightening
- Source is affected by the Dopplercrisis (high TeV-Doppler factors, low radio Doppler factors)

- April 2023: New (expected) gamma-ray maximum coupled with historical radio flare
- Triggered EHT observation with simultaneous MWL campaign

- April 2023: New (expected) gamma-ray maximum coupled with historical radio flare
- Triggered EHT observation with simultaneous MWL campaign

VLBA+Effelsberg 43 GHz

 First image (VLBA+Effelsberg) suggests ejection of a new jet component

- First image (VLBA+Effelsberg) suggests ejection of a new jet component
- Further follow-up observations on-going

- First image (VLBA+Effelsberg) suggests ejection of a new jet component
- Further follow-up observations on-going
- → will enable us to probe jet wobbling and ejection of a fast jet component

- First image (VLBA+Effelsberg) suggests ejection of a new jet component
- Further follow-up observations on-going
- → will enable us to probe jet wobbling and ejection of a fast jet component
- Data Reduction for MWL campaign and EHT currently on-going

- First image (VLBA+Effelsberg) suggests ejection of a new jet component
- Further follow-up observations on-going
- → will enable us to probe jet wobbling and ejection of a fast jet component
- Data Reduction for MWL campaign and EHT currently on-going
- → will enable us to constrain MWL short-term (intra-day) variability at the high state close to the EHT observation

New GMVA monitoring upcoming

Source	Classa	$S_{3mm}^{ m b}$	Redshift	ALMA	ATCA	TELAMON	MOJAVE	BEAM-ME	TANAMI
		[Jy]		Band 3		$19{-}44\mathrm{GHz}$	$15\mathrm{GHz}$	$43\mathrm{GHz}$	$8\mathrm{GHz}$
$S20109+22^{1}$	IBL	0.6-2	0.265	✓	✓	✓	✓		
$3\mathrm{C}84^\dagger$	RG	13.5 - 26	0.0176	\checkmark			\checkmark	\checkmark	
PKS 0346-27	FSRQ	0.5 - 2.7	0.991	\checkmark	\checkmark		(✓)		\checkmark
$TXS 0506 + 056^{\nu}$	IBL/HBL	0.5 - 2.3	0.3365	✓	\checkmark	✓	✓		
S50716 + 714	$\overline{\mathrm{IBL}}$	1 - 10	0.2304			\checkmark	✓	\checkmark	
PKS 0736+017	FSRQ	0.9 - 3.2	0.18941	\checkmark	\checkmark	\checkmark	\checkmark		
${ m OJ}287^{\dagger}$	$_{ m LBL}$	2.3 - 8.8	0.306	✓	✓		\checkmark	✓	
S40954+65	$_{ m LBL}$	0.5 - 7	0.3694			✓	(✓)	✓	
TON0599	FSRQ	0.3 - 6.7	0.724745	\checkmark	\checkmark	\checkmark	✓	✓	
4C + 21.35	FSRQ	0.3 - 2.0	0.43	✓	\checkmark	✓	\checkmark	\checkmark	
$\mathrm{M87}^{\dagger,2}$	\mathbf{RG}	3 - 4	0.00436		✓		✓		
$3\mathrm{C}279^{\dagger,2}$	FSRQ	5 - 30	0.536	\checkmark	\checkmark		\checkmark	✓	✓
OP 313	FSRQ	0.4 - 2.9	0.997	✓		✓	\checkmark	(✓)	
PKS 1510-089	FSRQ	0.9 - 5.0	0.36	✓	\checkmark		✓	\	✓
Ap Lib	$_{ m LBL}$	1.3 - 4.1	0.049	✓	✓		(✓)		✓
${ m OT}081^{\dagger u}$	$_{ m LBL}$	1.5 - 6.8	0.32	✓	✓	✓	√	✓	
${ m BLLac^\dagger}$	IBL	1 - 8	0.0686	✓		✓	\checkmark	✓	

- Expanding individual case studies to a larger sample
- Observations granted for Oct 25, Apr+Oct 26 at 3mm
- Using upgraded GMVA array (incl. APEX, KVN and GLT) for highest-resolution possible at 86 GHz/3mm

Next-Generation VLBI

New major radio facilities coming up in the next 10-20 years

operating at 1 - 120 GHz

Will enable unique synergies with CTAO, IceCube-Gen2, KM3NeT and many more

UFS Schneefernerhaus 1

11-story building, former hotel, since 1990 research station

18m ngVLA Design

- 1.2-120 GHz (goal 230 GHz)
- Single dish and VLBI facility
- Immediate integration with the EVN & GMVA
- German contribution to ngVLA
- German antenna for SKA-VLBI
- First element of future LEVERAGE concept

Science Program

- Black Holes and Relativistic Jets (JMU, MPIfR)
- Protoplanetry Disks (LMU)
- Dark Matter (MPA)
- Galaxy Evolution (MPIA)
- Additional partnerships invited!

+interdisciplinary topics and environmental research

18m ngVLA Design

- 1.2-120 GHz (goal 230 GHz)
- Single dish and VLBI facility
- Immediate integration with the EVN & GMVA
- German contribution to ngVLA
- German antenna for SKA-VLBI
- First element of future LEVERAGE concept

• The origin of high-energy emission in blazars is unclear, single zone models are challenged by the Doppler Crisis and possible Neutrino association

- The origin of high-energy emission in blazars is unclear, single zone models are challenged by the Doppler Crisis and possible Neutrino association
- Radio observations can help to distinguish between different scenarios to understand the physics of VHE production for Doppler-Crisis blazars and Neutrino-Candidate sources

- The origin of high-energy emission in blazars is unclear, single zone models are challenged by the Doppler Crisis and possible Neutrino association
- Radio observations can help to distinguish between different scenarios to understand the physics of VHE production for Doppler-Crisis blazars and Neutrino-Candidate sources
- Upcoming next-generation high-energy facilities like KM3Net, IceCube-Gen2, and CTAO will enable unique synergies with next-generation radio facilities like ngVLA, SKA, and WMT

Time for questions (and lunch)!

some lunch suggestions from your friendly neighborhood radio astronomer - with inspiration from the AIPS Cookbook

Neutrino production in blazars

- High energy protons required E > 10¹⁶ eV
- pp or pγ process

Credit: Sophia Dagnello, NRAO/AUI/NSF

