An alternative way to sky maps

Gamma-ray astronomy X statistical physics.

Detection mechanism at the TeV scales

Use atmosphere as a calorimeter.

Shower image, 100 GeV γ -ray adapted from: F. Schmidt, J. Knapp, "CORSIKA Shower Images", 2005, https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html

Not to scale

Detection mechanism at the TeV scales

-----1-3 km

Shower image, 100 GeV γ-ray adapted from: F. Schmidt, J. Knapp, "CORSIKA Shower Images", 2005, https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html

Not to scale

- Gamma/hadron separation is not perfect \rightarrow hadronic background
- We need to estimate the number of background events in the region of interest

ECEP

- Gamma/hadron separation is not perfect → hadronic background
- We need to estimate the number of background events in the region of interest

Reflected Background

- Gamma/hadron separation is not perfect ightarrow hadronic background
- We need to estimate the number of background events in the region of interest

Background template

- Gamma/hadron separation is not perfect → hadronic background
- We need to estimate the number of background events in the region of interest

Background template

Lima Significance (1983)

$$S(N_{\text{on}}, N_{\text{off}}, \alpha) = \sqrt{-2 \ln \Lambda} = \sqrt{2} \left\{ N_{\text{on}} \ln \left[\frac{1+\alpha}{\alpha} \frac{N_{\text{on}}}{N_{\text{on}} + N_{\text{off}}} \right] + N_{\text{off}} \ln \left[(1+\alpha) \frac{N_{\text{off}}}{N_{\text{on}} + N_{\text{off}}} \right] \right\}^{1/2}$$

"S quantifies how likely it is that all counts from the "on region" were only due to background"

Statistical physics

How can we quantify the structure of the black and white image?

How can we quantify the structure of the black and white image?

One way: Minkowski Functionals

In two dimensions there are 3 such functionals. (fullfilling some desirable properties)

In two dimensions there are 3 such functionals. (fullfilling some desireable properties)

Area: 27

In two dimensions there are 3 such functionals. (fullfilling some desireable properties)

Area: 27

Perimeter: 58

In two dimensions there are 3 such functionals. (fullfilling some desireable properties)

Area: 27

Perimeter: 58

Euler Characteristic: 1

Cosmic ray events will be isotropically distributed in all directions → homogeneous Poisson background

Generate black and white images by thresholding

A: 42, P: 96, χ: 1

Cosmic ray events will be isotropically distributed in all directions → homogeneous Poisson background

Generate black and white images by thresholding

• We can calculate all possible black and white images for a certain system size $N \to \text{distributions}$ for Minkowski functionals

A: 42, P: 96, χ: 1

Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel black if > threshold otherwise white)

Hypothesis test for each black and white image \rightarrow Null hypothesis: Observed black and white image is from a Poisson background with mean λ , at threshold X.

Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel black if > threshold otherwise white)

Hypothesis test for each black and white image \rightarrow Null hypothesis: Observed black and white image is from a Poisson background with mean λ , at threshold X.

Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel black if > threshold otherwise white)

Hypothesis test for each black and white image \rightarrow Null hypothesis: Observed black and white image is from a Poisson background with mean λ , at threshold X.

P = 0.71 in words: Given the hypothesis is true there is a chance of 71% that this black and white image (at threshold 10) or an even more unlikely one appears.

Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel black if > threshold otherwise white)

Hypothesis test for each black and white image \rightarrow Null hypothesis: Observed black and white image is from a Poisson background with mean λ , at threshold X.

P = 0.71 in words: Given the hypothesis is true there is a chance of 71% that this black and white image (at threshold 10) or an even more unlikely one appears.

For all possible thresholds:

p=0.348

p=0.326

p=0.818

p=0.481

Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel black if > threshold otherwise white)

Hypothesis test for each black and white image \rightarrow Null hypothesis: Observed black and white image is from a Poisson background with mean λ , at threshold X.

P = 0.71 in words: Given the hypothesis is true there is a chance of 71% that this black and white image (at threshold 10) or an even more unlikely one appears.

Take **smallest p-value** and **correct for trials** \Rightarrow p = 0.24

Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel black if > threshold otherwise white)

Hypothesis test for each black and white image \rightarrow Null hypothesis: Observed black and white image is from a Poisson background with mean λ , at threshold X.

P = 0.71 in words: Given the hypothesis is true there is a chance of 71% that this black and white image (at threshold 10) or an even more unlikely one appears.

For all possible thresholds:

Take **smallest p-value** and **correct for trials** \Rightarrow p = 0.24

This we can convert to $\sigma = 1.17$,

Minkowski sky maps: RX J1713.7 3946

SWG

Minkowski sky maps: RX J1713.7 3946

Why Minkowski sky maps

Advantages

- Standard LiMa method only sensitive to excess counts over background
- Minkowski functionals are sensitive to structural information
- Minkowski method can detect structures at different scales using the same kernel size

Disadvantages

- Computationally expensive
- Less sensitive if no complex structure is in the observation

Thank you for your attention!

Backup slides

Minkowski Functionals

Q: "How to evaluate the "geometry" of a subset of \mathbb{R}^n in a continuous and motion invariant way"

Area (A)
Perimeter (P)

Euler Characteristic (χ) \rightarrow Counts "holes"

Hardwiger's Theorem in mathematics states these are all functionals which exist. With that we can classify the structure of black and white images.