An alternative way to sky maps Gamma-ray astronomy X statistical physics. #### Detection mechanism at the TeV scales Use atmosphere as a calorimeter. Shower image, 100 GeV γ -ray adapted from: F. Schmidt, J. Knapp, "CORSIKA Shower Images", 2005, https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html Not to scale #### Detection mechanism at the TeV scales -----1-3 km Shower image, 100 GeV γ-ray adapted from: F. Schmidt, J. Knapp, "CORSIKA Shower Images", 2005, https://www-zeuthen.desy.de/~jknapp/fs/showerimages.html Not to scale - Gamma/hadron separation is not perfect \rightarrow hadronic background - We need to estimate the number of background events in the region of interest ECEP - Gamma/hadron separation is not perfect → hadronic background - We need to estimate the number of background events in the region of interest Reflected Background - Gamma/hadron separation is not perfect ightarrow hadronic background - We need to estimate the number of background events in the region of interest Background template - Gamma/hadron separation is not perfect → hadronic background - We need to estimate the number of background events in the region of interest #### Background template #### Lima Significance (1983) $$S(N_{\text{on}}, N_{\text{off}}, \alpha) = \sqrt{-2 \ln \Lambda} = \sqrt{2} \left\{ N_{\text{on}} \ln \left[\frac{1+\alpha}{\alpha} \frac{N_{\text{on}}}{N_{\text{on}} + N_{\text{off}}} \right] + N_{\text{off}} \ln \left[(1+\alpha) \frac{N_{\text{off}}}{N_{\text{on}} + N_{\text{off}}} \right] \right\}^{1/2}$$ "S quantifies how likely it is that all counts from the "on region" were only due to background" #### Statistical physics How can we quantify the structure of the black and white image? How can we quantify the structure of the black and white image? One way: Minkowski Functionals In two dimensions there are 3 such functionals. (fullfilling some desirable properties) In two dimensions there are 3 such functionals. (fullfilling some desireable properties) Area: 27 In two dimensions there are 3 such functionals. (fullfilling some desireable properties) Area: 27 Perimeter: 58 In two dimensions there are 3 such functionals. (fullfilling some desireable properties) Area: 27 Perimeter: 58 Euler Characteristic: 1 Cosmic ray events will be isotropically distributed in all directions → homogeneous Poisson background Generate black and white images by thresholding A: 42, P: 96, χ: 1 Cosmic ray events will be isotropically distributed in all directions → homogeneous Poisson background Generate black and white images by thresholding • We can calculate all possible black and white images for a certain system size $N \to \text{distributions}$ for Minkowski functionals A: 42, P: 96, χ: 1 Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel black if > threshold otherwise white) Hypothesis test for each black and white image \rightarrow Null hypothesis: Observed black and white image is from a Poisson background with mean λ , at threshold X. Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel black if > threshold otherwise white) Hypothesis test for each black and white image \rightarrow Null hypothesis: Observed black and white image is from a Poisson background with mean λ , at threshold X. Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel black if > threshold otherwise white) Hypothesis test for each black and white image \rightarrow Null hypothesis: Observed black and white image is from a Poisson background with mean λ , at threshold X. P = 0.71 in words: Given the hypothesis is true there is a chance of 71% that this black and white image (at threshold 10) or an even more unlikely one appears. Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel black if > threshold otherwise white) Hypothesis test for each black and white image \rightarrow Null hypothesis: Observed black and white image is from a Poisson background with mean λ , at threshold X. P = 0.71 in words: Given the hypothesis is true there is a chance of 71% that this black and white image (at threshold 10) or an even more unlikely one appears. For all possible thresholds: p=0.348 p=0.326 p=0.818 p=0.481 Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel black if > threshold otherwise white) Hypothesis test for each black and white image \rightarrow Null hypothesis: Observed black and white image is from a Poisson background with mean λ , at threshold X. P = 0.71 in words: Given the hypothesis is true there is a chance of 71% that this black and white image (at threshold 10) or an even more unlikely one appears. Take **smallest p-value** and **correct for trials** \Rightarrow p = 0.24 Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel black if > threshold otherwise white) Hypothesis test for each black and white image \rightarrow Null hypothesis: Observed black and white image is from a Poisson background with mean λ , at threshold X. P = 0.71 in words: Given the hypothesis is true there is a chance of 71% that this black and white image (at threshold 10) or an even more unlikely one appears. For all possible thresholds: Take **smallest p-value** and **correct for trials** \Rightarrow p = 0.24 This we can convert to $\sigma = 1.17$, #### Minkowski sky maps: RX J1713.7 3946 SWG #### Minkowski sky maps: RX J1713.7 3946 #### Why Minkowski sky maps #### Advantages - Standard LiMa method only sensitive to excess counts over background - Minkowski functionals are sensitive to structural information - Minkowski method can detect structures at different scales using the same kernel size #### Disadvantages - Computationally expensive - Less sensitive if no complex structure is in the observation ### Thank you for your attention! #### Backup slides #### Minkowski Functionals Q: "How to evaluate the "geometry" of a subset of \mathbb{R}^n in a continuous and motion invariant way" Area (A) Perimeter (P) Euler Characteristic (χ) \rightarrow Counts "holes" Hardwiger's Theorem in mathematics states these are all functionals which exist. With that we can classify the structure of black and white images.