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Use atmosphere as a calorimeter.
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Detection mechanism at the TeV scales
HAWC

H.E.S.S

Website HAWC

Website HESS

Use atmosphere as a calorimeter.
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Background modeling
- Gamma/hadron separation is not perfect  hadronic background 
- We need to estimate the number of background events in the region of interest
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Background modeling
- Gamma/hadron separation is not perfect  hadronic background 
- We need to estimate the number of background events in the region of interest

→

S(Non, Noff, α) = −2 ln Λ = 2{Non ln[
1 + α

α
Non

Non + Noff
] + Noff ln[(1 + α)

Noff
Non + Noff

]}1/2

“S quantifies how likely it is that all counts from the “on region” were only due to background”

Lima Significance (1983)

Background templateReflected Background
Berge, Funk 2007
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Statistical physics
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How can we quantify the structure of 
the black and white image?
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How can we quantify the structure of 
the black and white image?

One way: Minkowski Functionals
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Example
In two dimensions there are 3 such functionals. (fullfilling some desirable properties)
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Area: 27 Perimeter: 58 Euler Characteristic: 1

Example
In two dimensions there are 3 such functionals. (fullfilling some desireable properties)



Minkowski functionals and 
gamma-ray astronomy
• Cosmic ray events will be isotropically distributed in all directions  homogeneous Poisson 

background

• Generate black and white images by thresholding
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• We can calculate all possible black and white 
images for a certain system size   distributions 
for Minkowski functionals

N →

16

k ≥ 10

A: 42, P: 96, χ: 1



Minkowski functionals and 
gamma-ray astronomy

Idea: Generate, from a counts map, a series of black and white images by thresholding. (Set pixel 
black if > threshold otherwise white)
Hypothesis test for each black and white image  Null hypothesis: Observed black and white 
image is from a Poisson background with mean , at threshold X.
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image (at threshold 10) or an even 
more unlikely one appears.
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17

P = 0.71 in words: Given the 
hypothesis is true there is a chance 
of 71% that this black and white 
image (at threshold 10) or an even 
more unlikely one appears.

This we can convert to  = 1.17,σ
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Minkowski sky maps: RX J1713.7 3946
- 15 observations from 2004 released in HESS open data 2018
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Minkowski sky maps: RX J1713.7 3946
- 15 observations from 2004 released in HESS open data 2018
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- Standard LiMa method only sensitive to excess counts over background 
- Minkowski functionals are sensitive to structural information 
- Minkowski method can detect structures at different scales using the same kernel size

- Computationally expensive 
- Less sensitive if no complex structure is in the observation

Why Minkowski sky maps

Advantages

Disadvantages
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Thank you for your attention!
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Backup slides
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Minkowski Functionals

Q: “How to evaluate the “geometry” of a subset of  in a continuous and motion invariant way”ℝn

Area (A)
A = 16

A = 16
Perimeter (P) P = 16

P = 20

Euler Characteristic (  )χ
Counts “holes”→

A = 7

A = 7

P = 16

P = 16

χ = 0

χ = 1

Hardwiger’s Theorem in mathematics states these are all functionals which exist.
With that we can classify the structure of black and white images.


