

SOF - 7009

Master's Thesis by **Edwin John** Anthikat

Dr. Karl-Remeis Sternwarte, Bamberg under

Prof. Dr. Manami Sasaki

28.07.2025

First Information Report

First study of the supernova remnant population in the Large Magellanic Cloud with eROSITA

```
© Federico Zangrandi<sup>1</sup>★, Katharina Jurk<sup>1</sup>, © Manami Sasaki<sup>1</sup>, Jonathan Knies<sup>1</sup>, © Miroslav D. Filipović<sup>2</sup>, © Frank Haberl<sup>3</sup>, © Patrick Kavanagh<sup>4</sup>, © Chandreyee Maitra<sup>3</sup>, © Pierre Maggi<sup>5</sup>, © Sara Saeedi<sup>1</sup>, Dominic Bernreuther<sup>1</sup>, © Bärbel S. Koribalski<sup>6,2</sup>, © Sean Points<sup>7</sup> and © Lister Staveley-Smith<sup>8</sup>
```

Received: 6 December 2023 Accepted: 3 October 2024

The eROSITA count rate three-colour image with red: 0.2–0.7 keV, green: 0.7–1.1 keV, and blue: 1.1–5.0keV

Who? SNR

Stars explode - Supernova
What remains - Supernova Remnant

Type la

Core Collapse

Image Credit: X-ray: NASA/CXC/SAO; Infrared: NASA/ESA/CSA/STScI/D. Milisavljevic (Purdue Univ.), I. De Looze (UGent), T. Temim (Princeton Univ.); Image Processing: NASA/CXC/SAO/J. Major, J. Schmidt and K. Arcand

Type Ia

White dwarf accretes mass from the companion.

Chandrasekhar limit: 1.4 M

As soon as mass > 1.4 M_o, star explodes.

Iron is created along with many other elements.

4

No fusion past iron.

Gravity crushes the iron core.

Core collapses.

In the explosion, Fe is destroyed.

Credit: Foglizzo, T. (2017). Explosion Physics of Core-Collapse Supernovae. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_52

Where? LMC

Large Magellanic Cloud

Our neighbour galaxy 50,000 pc from Earth.

Nearly face-on.

Credit: ESA/NASA/JPL-Caltech/CSIRO/C. Clark (STScI)

'The Crime Scene'

Magellanic Cloud Emission-line Survey.

Beautiful!

What are the secrets of this beauty?

I studied in X-rays using XMM-Newton.

R:Ha B:SII G:OIII

XMM-Newton

X-ray Multi-Mirror Mission by ESA Launched on December 10, 1999.

Studies X-ray sources across the Universe

XMM-Newton has European Photon Imaging Camera (EPIC)

3 CCD cameras for X-ray imaging

Energy range of 0.15 to 15 keV

Field of view: 30'

Credit: ESA/D. Ducros

The exposure time was ~ 40 ks for each detector for our observation.

What XMM saw

R (300-700 eV)

G (700-1100 eV)

B (1100-1500 eV)

obtained by combining the three CCDs' data in three different energy bands.

We see 'green' emission ⇒
Higher 700-1100 eV emission
⇒ Likely, high Fe abundance,
energy range of Fe L-shell lines

What XSPEC Fitted

	*
cstat - fit(a)	cstat - fit(b)
$0.76^{+0.04}_{-0.03}$	$0.76^{+0.05}_{-0.04}$ 8
$0.75^{+3.45}_{-0.54}$	0.21^{frozen}
< 5.82	$1.19_{-0.33}^{+0.49}$
>3.75	>3.4
13.2	$15.4^{+4.4}_{-6.6}$ ූ
2082.84(6007)	2056.99(6006)
	$0.76_{-0.03}^{+0.04}$ $0.75_{-0.54}^{+3.45}$ < 5.82 > 3.75 13.2

Model

vnei: non-equilibrium collisional ionization plasma model with variable abundances.

How did the progenitor die?

Or, who was the progenitor?

How did the progenitor die?

Or, who was the progenitor?

13

What Fits Ratioed

Likely.

But, large uncertainties.

Not enough data to constrain.

	[O]/[Fe]	$\frac{[O]/[Fe]}{[O]/[Fe]_{LMC}}$
LMC	0.60	1
c-stat fit (a)	0.53	0.88
c-stat fit (b)	0.18	0.3
c-stat fit (c)	0.40	0.67

$$rac{[O]/[Fe]}{[O]/[Fe]_{LMC}} \ll 1 \;\; \Rightarrow$$
 Type Ia progenitor Maggi et al. 2016

More secrets need to be unveiled.

Neighbours need to be interrogated.

Suspicious Neighbour

'Strange Orange'

Zaritsky et al. [2004]: The magellanic clouds photometric survey: The large magellanic cloud stellar catalog and extinction map. Oct 2004. doi: 10.1086/423910.

T. Lejeune and D. Schaerer. Database of Geneva stellar evolution tracks and isochrones for UBVRIJHKLL'M, HST-WFPC2,

Knock, Knock, Who?

The 'Strange Orange' could be a region affected by the stellar feedback of these 3 massive stars, of which 1 is still active.

The proximity of these massive stars indicates that the progenitor of our SNR could have been a massive star which exploded in core collapse.

However, [O], [Fe] abundances suggest a Type Ia.

Case Unsolved!
(like most cases of an SNR)

What else glows 'orange'?

We see

2 massive stars still alive,4 massive stars dead,3 YSOs

What HRD says

We see

2 massive stars still alive,

4 massive stars dead,

3 YSOs

Zaritsky et al. [2004]: The magellanic clouds photometric survey: The large magellanic cloud stellar catalog and extinction map. Oct 2004. doi: 10.1086/423910.

T. Lejeune and D. Schaerer. Database of Geneva stellar evolution tracks and isochrones for UBVRIJHKLL'M, HST-WFPC2,

A Graveyard?

We see

2 massive stars still alive,4 massive stars dead,3 YSOs

What secrets did X-Rays whisper?

Parameter	χ^2 -fit	c-stat fit
Effective X-ray Radius	$11.74 \pm 2.345 \text{ pc}$	
	$(3.62 \pm 0.725) \times 10^{19} \text{ cm}$	
Semimajor Axis	$12.30 \pm 2.46 \; \mathbf{pc}$	
	$(3.78 \pm 0.76) \times 10^{19} \text{ cm}$	
Semiminor Axis	$11.18 \pm 2.24 \; \mathbf{pc}$	
	$(3.45 \pm 0.69) \times 10^{19} \text{ cm}$	
Volume (X-ray emitting ellipsoid)	$(1.89 \pm 0.847) \times 10^{59} \text{ cm}^3$	
Emission Measure (EM)	$(2.76^{+0.06}_{-0.35}) \times 10^{56} \text{ cm}^{-6}$	$(4.53^{+1.29}_{-1.94}) \times 10^{56} \text{ cm}^{-6}$
Hydrogen Density (n_H)	$0.035 \pm 0.012~{ m cm^{-3}}$	$0.031 \pm 0.016 \ \mathrm{cm^{-3}}$
X-ray emitting Mass	$5.5\pm3.1~\mathrm{M}_\odot$	$10.21 \pm 6.06~\textrm{M}_\odot$
Age	$43000 \pm 2000 \text{ years}$	
Shock velocity	$232.76 \pm 47.71 \text{ km/s}$	

21

What XSPEC Fitted

C-stat Fit

Almost same fit values except Fe, O abundances.
But,

Fe, O abundances are critical

Suspicion: HII Region

- Because, high H-α emission,
- High absorbing hydrogen column density, N_H=(0.8±0.1)·10²² cm⁻²
- Radius ~ 16.5 pc
- In front of the SNR

What does it look like?

Statistically,

Peters et al. [2013]

Circular Remnant ⇒ Type Ia SN.

But,

there are counter-examples.

24

Typing the Explosion

O, Ne, Mg, Si...

- CC SNe:

 alpha elements,

 Fe
- Type Ia: ⊕alpha elements, ⊕Fe

$$\frac{[O]/[Fe]}{[O]/[Fe]_{LMC}} \ll 1$$

⇒ Type 1a progenitor

Maggi et al. 2016

- [O]/[Fe] = 0.3-0.7 for Type Ia events

Bozzetto et al. 2014

XMM-Newton

X-ray Multi-Mirror Mission by ESA Launched on December 10, 1999.

Studies X-ray sources across the Universe

XMM-Newton has

1. European Photon Imaging Camera (EPIC)

3 CCD cameras for X-ray imaging

- 2. Reflection Grating Spectrometer (RGS)
- 3. Optical Monitor (OM)

Image courtesy of D.Ducros and ESA. Credit: ESA/XMM-Newton

mos and pn

Credit: ESA/XMM-Newton