







# Identifying potentially mis-modelled extended sources in 4FGL using clustering analysis

Giovanni Cozzolongo, A. Mitchell, S. Spencer, D. Malyshev, T. Unbehaun

Astroparticle School 2025

### Fermi Gamma-ray Space Telescope











- Large Area Telescope (LAT).
- Pair conversion telescope.
- Detects photons in an energy range from
   20 MeV to over 300 GeV.
- Covers the entire sky in 3 hours.
- Measures of time, energy and direction of incident photons.
- LAT **14-year** Source Catalog (4FGL-DR4).

https://arxiv.org/abs/2307.12546

#### Fermi Point Source Catalog











Credits: S. Abdollahi et al. (2020) ApJS, 247, 33.

- 7194 4FGL-DR4 sources.
- 2065 unidentified sources.
- 81 extended sources.
- Extended sources may be **misidentified** as point source clusters.
- May match HESS extended sources.

#### The case of 4FGL J1813.1-1737e











Credits: F. Aharonian et al. (2024) A&A, 686, A149

- Two unidentified 3FGL point sources in the region of HESS J1813-178, associated with a y-ray PWN (Acero et al., 2015).
- Extended morphology fits data better than two point sources (Araya, 2018).
- Comparable spectral indices
  measured at GeV and TeV (Araya, 2018).
- **Fermi-LAT and H.E.S.S.** data can be described by a single source model (F. Aharonian et al. 2024, A&A, 686, A149).

https://arxiv.org/abs/2403.16802

### **Spatial clustering**











- Apply unsupervised machine learning to the 4FGL catalog.
- Used **DBSCAN** (Density-Based Spatial Clustering of Applications with Noise).
- DBSCAN searches for clusters of points and classifies the points into core, border or noise points (Ester et al., 1996).

#### Fermi-LAT clusters map











- Set eps = 0.005 rad  $\approx$  0.3 deg and minPts = 2.
- Included only unassociated sources and sources associated with pulsars, supernova remnants, and active galaxies (7030 sources in total).
- Found 48 clusters (124 sources), each including at least one unidentified source.
- There are **mostly clusters of size 2**, with some up to 7.

# **HGPS (HESS Galactic Plane Survey)**











HGPS contours are from H. Abdalla at al. (2018) A&A, 612, A1

#### **Test Statistics**









- Likelihood nomenclatures:
  - No-source hypothesis:  $L_0$
  - Single point hypothesis:

- Many points hypothesis:  $\mathbf{L}_{ ext{Npts}}$
- Extended hypothesis:  ${
  m L_{ext}}$

- Test Statistic definitions:
  - $\circ$  Extended source TS:  $TS = 2 \log(L_{ext}/L_0)$
  - $\circ$  Source extension TS:  $TS_{ext} = 2 \log(L_{ext}/L_{ps})$
  - $\circ$  N point sources TS:  $ext{TS}_{ ext{Npts}} = 2 \log( ext{L}_{ ext{Npts}}/ ext{L}_{ ext{ps}})$
- Followed these criteria (Ackermann et al. 2017, ApJ, 843, 139):
  - Claim a detection: TS > 25
  - $\circ$  Define a source as extended:  $TS_{\rm ext} > 16$
  - $\circ$  Find the preferred model (AIC test):  $ext{TS}_{ ext{ext}} > ext{TS}_{ ext{Npts}} 2\Delta k$

#### **Test Statistics**









- Likelihood nomenclatures:
  - No-source hypothesis:  $L_0$
  - Single point hypothesis:

- Many points hypothesis:  $\mathbf{L}_{ ext{Npts}}$
- Extended hypothesis:  $m L_{ext}$

- Test Statistic definitions:
  - Extended source TS:  $\mathrm{TS} = 2 \, \log(\mathrm{L_{ext}/L_0})$
  - $ext{TS}_{ ext{ext}} = 2 \, \log( ext{L}_{ ext{ext}}/ ext{L}_{ ext{ps}})$ Source extension TS:
  - $\mathrm{TS_{Npts}} = 2 \, \log(\mathrm{L_{Npts}/L_{ps}})$ N point sources TS:
- Followed these criteria (Ackermann et al. 2017, ApJ, 843, 139):
  - Claim a detection: TS > 25
  - $\circ$  Define a source as extended:  $TS_{\rm ext} > 16$
  - $\circ$  Find the preferred model (AIC test):  $ext{TS}_{ ext{ext}} > ext{TS}_{ ext{Npts}} 2\Delta k$

#### **Test Statistics**









- Likelihood nomenclatures:
  - No-source hypothesis: Lo
  - Single point hypothesis:

- Many points hypothesis:  $\mathbf{L}_{ ext{Npts}}$
- Extended hypothesis:  $L_{
  m ext}$

- Test Statistic definitions:
  - Extended source TS:  $ext{TS} = 2 \, \log( ext{L}_{ ext{ext}}/ ext{L}_0)$
  - $ext{TS}_{ ext{ext}} = 2 \, \log( ext{L}_{ ext{ext}}/ ext{L}_{ ext{ps}})$ Source extension TS:
  - $ext{TS}_{ ext{Npts}} = 2 \, \log( ext{L}_{ ext{Npts}}/ ext{L}_{ ext{ps}})$ N point sources TS:
- Followed these criteria (Ackermann et al. 2017, ApJ, 843, 139):
  - TS > 25Claim a detection:
  - $\mathrm{TS}_{\mathrm{ext}} > 16$ Define a source as extended:
  - Find the preferred model (AIC test):  $ext{TS}_{ ext{ext}} > ext{TS}_{ ext{Npts}} 2\Delta k$











- The **patch** accounts for residual emission that is not well represented by the standard interstellar emission templates (e.g. Fermi Bubbles).
- GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation.











- The **patch** accounts for residual emission that is not well represented by the standard interstellar emission templates (e.g. Fermi Bubbles).
- GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation.











- The patch accounts for residual emission that is not well represented by the standard interstellar emission templates (e.g. Fermi Bubbles).
- GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation.











- The patch accounts for residual emission that is not well represented by the standard interstellar emission templates (e.g. Fermi Bubbles).
- GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation.

### Results of the promising clusters









Table 3: Properties of significant clusters with test statistic values. In particular,  $\Delta$ AIC is equal to the value of AIC for each model minus the AIC value for the best-fit mode. Flag definitions: (1) mass center of original clustered source positions is outside the 68% containment radius of extended source found using standard diffuse model; (2) mass center of original clustered source positions is outside the 68% containment radius of extended source found using unpatched model; (3) mass center of original clustered source positions is outside the 68% containment radius of extended source found using GALPROP model; (4) additional point sources identified beyond the extended source.

| Cluster ID | $TS_{original}$ | $TS_{extended}$ | $TS_{extension}$ | Params Orig | Params Cluster | $\Delta AIC$ | Flags      |
|------------|-----------------|-----------------|------------------|-------------|----------------|--------------|------------|
| 2          | 78              | 128             | 49               | 16          | 12             | 58           |            |
| 4<br>5     | 8               | 61              | 65               | 17          | 13             | 61           | 1, 3       |
| 5          | 20              | 102             | 115              | 21          | 17             | 90           |            |
| 6          | 22              | 181             | 173              | 25          | 19             | 171          | 2          |
| 7          | 355             | 420             | 150              | 28          | 21             | 78           | 4          |
| 8          | 18              | 113             | 102              | 18          | 17             | 96           | 2, 3       |
| 11         | 33              | 58              | 48               | 15          | 11             | 32           | 2, 3       |
| 12         | 43              | 70              | 27               | 19          | 14             | 37           | 3          |
| 14         | 65              | 176             | 68               | 20          | 18             | 115          | 4          |
| 16         | 20              | 81              | 63               | 13          | 13             | 61           |            |
| 17         | 33              | 143             | 140              | 15          | 11             | 118          |            |
| 23         | 17              | 98              | 92               | 13          | 12             | 82           | 2, 3       |
| 28         | 92              | 242             | 154              | 20          | 24             | 141          | 4          |
| 29         | 56              | 184             | 137              | 25          | 20             | 138          |            |
| 30         | 797             | 802             | 452              | 43          | 17             | 56           | 1, 2, 3    |
| 31         | 0               | 1511            | 546              | 25          | 23             | 1515         | 4          |
| 34         | 52              | 181             | 167              | 15          | 10             | 139          |            |
| 38         | 69              | 266             | 62               | 40          | 10             | 256          | 2          |
| 39         | 58              | 191             | 56               | 27          | 17             | 153          | 1, 2       |
| 41         | 0               | 2271            | 760              | 25          | 23             | 2275         | 4          |
| 42         | 0               | 280             | 81               | 20          | 15             | 290          |            |
| 43         | 99              | 112             | 45               | 16          | 12             | 20           |            |
| 45         | 2823            | 2816            | 19               | 20          | 16             | 0            | 1, 2, 3, 4 |
| 46         | 193             | 197             | 79               | 14          | 10             | 11           | 1, 2       |
| _48        | 58              | 89              | 51               | 14          | 10             | 38           | 3          |

G. Cozzolongo

#### **2FGES and HGPS matches**













# Summary and outlook









- Spatial clustering with DBSCAN to find misidentified extended sources.
- Comparing point sources vs single extended source models with Fermipy.
- Vary the radius from 0.3 to 0.5 degrees.
- Matching the clusters with sources from 2FGES and HGPS.
- Explore on TeV/MWL context.
- Presented at y-2024.
- Presented at HESS Collaboration Meeting.
- Paper draft almost ready.
- Joint Fermi-LAT and H.E.S.S. fits in Gammapy.
- Incorporate eROSITA data.

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics Nikolaus-Fiebiger-Str. 2, Lehrstuhl für Physik 91058 Erlangen, Germany giovanni.cozzolongo@fau.de

### Back-Up (1)









#### Binning

Spatial bin size: 0.025 deg

ROI width: 6 deg

Source ROI width: 10

Energy bins per Decade: 8

#### Event class

• P8R3\_SOURCE

#### Event types

• FRONT + BACK

PSF0, PSF1, PSF2, PSF3

#### Models

Catalog: gll\_psc\_v34.fit

Galactic Diffuse: gll\_iem\_v07.fits

#### • IRFs

P8R3\_SOURCE\_V3\_PSF\*\_v1

#### Energy

o min: 5 GeV

max:1TeV

#### • Time

o min: 246823875

o max: 681004805

#### Filters

DATA\_QUAL>0

LAT\_CONFIG==1

#### Zenith angle cut

90 deg

# Back-Up (2)









- GC: galactic center
- **PSR**: young pulsars
- MSP: millisecond pulsars
- **PWN**: pulsar wind nebula
- **SNR**: supernova remnant
- **SPP**: supernova remnant / pulsar wind nebula
- GLC: globular cluster
- SFR: star-forming region
- HMB: high-mass binary
- LMB: low-mass binary
- BIN: binary
- NOV: nova

- **BLL**: Lac type of blazar
- **FSRQ**: FSRQ type of blazar
- RDG: radio galaxy
- AGN: nonblazar active galaxy
- SSRQ: steep spectrum radio quasar
- CSS: compact steep spectrum radio source
- **BCU**: blazar candidate of uncertain type
- NLSY1: narrow-line Seyfert 1
- SEY: seyfert galaxy
- SBG: starburst galaxy
- GAL: normal galaxy (or part)

### Back-Up (3)











W. B. Atwood et al. (2009) ApJ, 697, 1071

- Fermi Gamma-ray Space Telescope.
- Launched by NASA on June 11, 2008.
- Pair conversion telescope.
- Detect photons in an energy range from
   20 MeV to over 300 GeV.
- Field of view 2.4 steradian (20% sky).
- Covers the **entire sky** in 3 hours.
- Measures of time, energy and direction of incident photons.
- 4 × 4 array of identical towers each one including a tracker/converter and a calorimeter module;
- Anticoincidence detector (ACD).

# Back-Up (4)













Credits: Fermi-LAT Collaboration, 2021 https://www.slac.stanford.edu/exp/glast/groups/canda/lat Performance.htm

- PSF event types are based on the quality of the reconstructed direction.
- Set minimum energy to 5 GeV to achieve PSF of less than 0.1 degrees.
- Set maximum energy to 1 TeV, achieving Energy Dispersion below 15%.
- Can use spatial bin size of 0.025 deg (Ackermann et al. 2018, ApJS, 237, 32).

# Back-Up (5)









