Astrophotography 101 So, you want to take pretty pictures of space?

Astroparticle School 2025 Dr. Martin Rongen

Speaker introduction

Astroparticlephysicist @ ECAP working on the IceCube Neutrino Observatory

- 2019: PHD from RWTH Aachen

- 2020-2023: Postdoc in Mainz

- 2023: joined ECAP as habilitation candidate

• Started in astrophotography in August 2024 (so still rather new to all this...)

Astrophotography as your miniature science experiment

• Chose your science case

• Design, fund & build your experiment

Gather the data

Process the data

Types of astrophotography

DSLR & Tripod F500 Rule Short Scope & Star Tracker

Long Scope & Heavy Mount

The seasons of astrophotography

Landscape / milky way nebulae astrophotography in summer & autumn.

Solar, lunar, planetary & satellites

Plenty of other specialized fields requiring unique techniques (e.g. lucky imaging) and equipment.

Equipment overview

Every setup consists of 3 major components:

- A sturdy mount (tripod EQ mount)
- The optics (lens telescope)
- A camera (DSLR astro camera)

And lots and lots of little things:

- Power supplies
- Data storage
- Focusing masks

Untracked setup

- Camera, Lens, Tripod, Intervallometer
- Landscape astrophotography sadly only makes sense with very little light pollution
- Long exposures yield star trails
- F500 rule for sharp stars:
 - Exposure: 500s/focal length[mm]
 - Modulo crop factor, ...e.g. PhotoPills app for details
- Sensible focal length range:
 - 50mm: ~20° FOV
 - 135mm: ~7° FOV (moon is about 0.5° diameter)

Star trackers

• Same setup as before, but now adding one-axis constant-speed motor to compensate Earth rotation

• Exposure times limited by accuracy of tracker, generally around 30-45 seconds

• Focal length limited by maximum weight tracker can support, 135mm max still sane

Equatorial mounts

• Telescope mounted rigidly and two axes to be able to slew to any direction

• Right ascension axis aligned with Earth rotation / celestial pole Declination axis at 90°

• Alt-Azimuth mounts have their specific uses (visual...) BUT are generally not preferred as they introduce field rotation (can keep target centered, but image rotates)

- Also allows for guiding:
 - While primary telescope is taking long exposures
 - Secondary guide telescope takes an image every second and sends correction signals to mount

Movement

Optics basics: Focal length & aperture

- Telescopes project an angular seperation onto a focal imaging plane
- Longer focal length → larger angular magnification → less intensity per unit area
- Larger aperture \rightarrow more photons in total
- Image brightness given by f-ratio: focal length/aperture
- Slow scopes: Large f-ratio; Fast scopes: Small f-ratio

Camera basics: Pixel characteristics

Angular resolution and FOV

- The telescope focal length and camera pixel size determines the per-pixel angular resolution
- Multiplied with horizontal and vertical number of pixels yields the FOV
 - → needs to be matched to target (or dedicate to a mosaic)
- Actual resolution mostly limited by atmospheric seeing (typically 1")
 - Oversampling does not improve image
 - Undersampling can increase SNR but degrade resolution
- Additional diffraction Rayleigh limit for small apertures
- Calculator @
 https://astronomy.tools/calculators/ccd_suitability

Refractors & lenses

- Most camera lenses are BAD (Your stars are purple and large?? You have chromatic aberration....)
- Prime lenses can be good (well known Rokinon/Samyang 135mm f2)
 but often need to be stepped down (closing the aperture for larger f-ratio)
- Dedicated astro-lenses / refractos often use expensive fluorite optics

Reflectors (here only discussing Newtonians)

- Cheapest way to get a descent f-ratio at larger focal lengths
- But reflectors suffer from comatic abberation requiring another expensive piece of equipment (coma corrector)
- Newtonians also require alignment of the optical train (called collimation) (can even drift as telescope slews)
- And lots of fine-tuning for good optical quality (flocking, secondary spider alignment for symmetric diffraction splikes)

Color vs. Mono cameras

• Color cameras use Bayer color mask in front of pixels (2 green, 1 blue, 1 red to match human color perception)

- "Real resolution" only 50% of what is quoted
- Few things in sky actually green...
- Mono cameras do not feature Bayer mask
 - 3x photon count without filters (luminance)
 - Stacking images with color filters gives color image
 - Allows for efficient narrowband imaging
- Filter wheels allow for automatic cycling of filters during imaging session

DSLRs vs. Dedicated astro cameras

• DSLR:

- Multi-purpose, often already on hand
- Cheap when used (< 200€)
- Low sensitivity, but UV-IR cutoff filters can be removed
- uncooled → high noise (especially in Summer)

Astrocameras:

- Require dedicated PC to readout
- Can be mono!!
- Cooled and low noise

(Narrowband) filters and SNR

- Selecting discrete emission lines (non-thermal component)
 - Interesting to look at specific elements
 - Suppresses most light pollution
 → higher SNR
- Dual-narrowband (Ha, OIII) amazing for DSLRs
- Broad-band light pollution filters mostly not worth it

Aquisitions software (ASIair, NINA)

Smart telescopes

- Extremely good value for money
- Easy entry point into descent astrophotography, with imaging being fully controlled in phone ap
- To me not really interesting as I enjoy building and understanding my setup as much as using it....

Planning an astro-night

- Is the weather fine?
- What is the seeing like?
- What moon phase are we in?
- Which targets are high in the sky? (close to opposition)
- Want to drive to a dark site?
 - → target selection (narrow vs broadband target)
- Pick and prepare equipment to match target

Light pollution (anthropogenic and the moon)

- Diffuse light background washes out targets
 (SNR more important than #photons)
- Full moon is ~bortel 7

Polar alignment

- Align R.A. axis to celestial pole via small telescope inside R.A. axis
- Polaris is close but not exact ($\sim 0.45^{\circ}$ away)

• Star trackers sometimes feature lasers for rough alignment

Finding the target I: Star hoping & plate solving (GPS in space)

- With a star tracker now you need to find the object by manually pointing the camera (while not knocking the tracker out of alignment)
- Star charts and phone planetarium software is helpful to go from constellation to constellation, star by star to the object

- This can be VERY frustrating and time consuming ...
- Most of the time you will not even see your DSO in the image,
 here plate solving helps to iterate

Finding the target II: Star alignment and automation

- Motorized go-to mounts feature star alignment methods
 - Mount slews to bright star
 - You manually center it in the FOV
 - Repeat $3x \rightarrow$ mount knows orientation
- When software controlling all components

 (i.e. in NINA) software will plate solve every
 image and can automatically determine telescope
 orientation and slew to targets

Guiding

- Secondary guide scope takes an image every
 second
- Software analyses star positions and sends correction signals to mount
 - → can keep image stable to sub-arcseconds for minutes

Also allows for dithering:
 Sub-pixel resolution photography
 by randomly offsetting image by fractional pixel counts

Focusing

Spherical aberration call spherochromatism typical for camera lenses

- Manual focusing aided by diffraction spikes of e.g. Bahtinov masks
- With a computer controlled setup can measure star size
 (& with an electronic auto-focuser set focus position with um-accuracy)

Gathering subframes (subs)

- Sub exposure time limited by:
 - Tracking / guiding stability
 - Camera dynamic range (keep stars unsaturated for true color)
 - Satellite trails
 - Can range between seconds to several minutes

• Small project ~1h, serious projects starting at 10h, deep exposures can go to several hundred hours

Calibration frames – darks & flats

Camera image in perfect darkness not perfectly dark:

- ADC read-noise
- Thermal dark current
- Taken at same temperature
 & exposure settings

Not the same sensitivity everywhere in the image:

- Sensitivity falls of at large angles
- Dust particles (motes)
- Taken using LED panels or the sky at dusk/dawn with diffusor cloth sheets

Post-processing software

Siril

Open-source, very capable for both artistic and scientific imaging

my personal favorite

PixInsight ~400€ Supposed to be THE best in software.

Not tried myself yet...

AstroPixelProcessor ~200€, supposed

to be quite good

Sequator

Free, good for landscapes

SetiAstroSuite

Free, rapidly developing, technical, amazing strong AI integration

ASTAP

Free, great but plate solving

DeepSkyStacker Free, a bit outdated Stacking – calibrate, align & average subs

A tangent on SNR....

- Stacking is not about gathering more light, but about increasing the statistical uncertainty of the gathered light....
- Each pixel samples from a Poisson distribution of Target Flux + Sky flux
- We want to measure the Target Flux:
 - SNR = Target Flux * time / sqrt((Target Flux + Sky Flux) * time)
- → SNR grows as the square root of time
 - Time needed to reach a constant SNR growth linear with Sky flux

Cropping & Background extraction

- After stacking crop image to common region
- Fit and subtract low-order polynomial to remove sky flux / light pollution background
- (Or use AI models like GraXpert)

Sharpening & denoising (classic & AI)

- images can be improved either by deconvolution (when knowing the PSF) or applying AI denoising/sharpening tools
- Best to go easy, as aggressive sharpening leads to artifacts

(Spectrophotometric) color calibration

Color in astrophotography is always tricky and often a matter of taste.

But initial color correction / white balancing often performed on catalog data of star colors (e.g. from the Gaia satellite mission)

Stretching

- Original image is "linear": Twice the photon count = twice the image brightness
- We need to apply a transfer function to lift information from shadows into mid-tones and highlights
- Can be algorithmic (statistical stretches), guided (arcsinh, GHS) or manual
- Also referred to as histogram or curve transformations
- Be slow and go in steps, easy to over-do

Star processing (e.g. with StarNet++)

Foreground stars often a lot brighter compared to deep sky object.

Problem: Would want to stretch DSO strongly, but this clips stars....

Common solution: Use (AI) tools to seperate stars and DSO and process separately

Layer based image editors

• After stretching images mostly further processed in classical layer based editors (Photoshop, Gimp)

Narrowband color assignment (color pallet picking)

• L-RGB merging (based on L mask)

Stars and starless blending

- Artistic touchups:
 - Color contrasts
 - Wavelet sharpening
 - Curve transformations
 -

Merging narrowband and/or L-RGB

Scientific imaging: Photometry (HRD)

Images can also be used quantitatively. For example to measure star color and brightness, building "Hertzsprung-Russell diagram" to see stellar evolution and for example measure relative distance of star clusters. ∴Hyades HRD Pleiades HRD

Scientific imaging: Variable stars

Scientific imaging: Exoplanet transients

Scientific imaging: Balmar decrement imaging

Capturing the ratio of H-alpha (656nm) to H-beta (486nm) emission to deduce hydrogen gas temperature

Scientific imaging: Spectroscopy

Astrophotography as an academic hobby

- We can get AMAZING results
- BUT there will also be better pictures than yours

• The hobby is mostly about learning to improve yourself and plenty of failing along the way

• So temper your expectations and enjoy the progression

Some more pictures

Thank you for your attention!

Questions?