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Plan of the lecture

[1] Supernova remnants are spherical

[2] Dynamical evolution of SNRs

[3] Cosmic ray escape from SNRs (naive)

| CR escape from sources l

iﬂ Supernova remnants ﬂ

[5] CR escape from SNRs (a bit more formal, but
still quite hand wavy...)

[6] maximum energy of accelerated CRs

[7] spectrum of escaping CRs

L e ———————

Conclusions




Supernova remnants
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1‘ [3] DSA predicts E-2 spectra, bu'r e eed -z.z !
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understand particle escape from
the accelerator
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think about the extreme ™\
case where particles NEVER
escape the accelerator..




A small detail...

T R ——m = e — —— — — —

DSA: we considered a plane and infinite shock moving at constant speed

|
|

L




A small detail...
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l; DSA: we considered a plane and infinite shock moving at constant speed
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Astrophysical explosions

interstellar medium
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Astrophysical explosions

interstellar medium | |
mass of the ejecta explosion energy
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interstellar medium

Me; > My, M.,; FEsy




Astrophysical explosions

interstellar medium

free expansion
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Astrophysical explosions

interstellar medium

free expansion

4 (constant speed)
1 2E <N M.\~ 1/2
ESN — —Me]?]ghﬁ VUgh — Mej ~ 10000 <M®J> km/s
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Astrophysical explosions

interstellar medium
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Astrophysical explosions

interstellar medium

Mej = Mgy Mej Esn ) 4 74

it takes few centuries
to reach this moment
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the ambient gas and
decelerates




Astrophysical explosions

interstellar medium

ESN P 0

| the shock begins to

feel the presence of
the ambient gas and
decelerates




Astrophysical explosions

interstellar medium

]xj ESN P 0

| the shock begins to

feel the presence of
the ambient gas and
decelerates

cs ~ 10 km /s

] strong shock ﬂ




Astrophysical explosions

interstellar medium

| the shock begins to

feel the presence of
the ambient gas and
decelerates

cs ~ 10 km /s

] strong shock ﬂ




Astrophysical explosions
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| strong shock H
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non-dimensional quantity: q =
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Astrophysical explosions

interstellar medium

feel the presence of
the ambient gas and
decelerates

cs ~ 10 km /s

| strong shock |

order unity
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Astrophysical explosions

interstellar medium

M.; < Mg, W, Esn X

Sedov-Taylor solution




Astrophysical explosions

interstellar medium

. This solution holds
until +~104-105 yr,

after that the SNR
cools due to emission
of X-ray photons

. Sedov-Taylor solution m
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How do cosmic rays escape
from their sources?



SNR shocks are spherical —> CR escape
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SNR shocks are spherical —> CR escape

B = o - - . e — —— ————

| diffusion is fasfer for'_lar'ger' energies —> high energy pr"ricles escape fit?
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SNR shocks are spherical
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SNR shocks are spher'lcal

|
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CR particle

.1 .
L 9 <R2 8f> = §(R - R)

R? OR OR

IL boundary conditions I

lim f=0

R—o0 we treat the shock as

Y/, an absorbing boundary
f(Rsn) =0
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SNR shocks are spherical
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SNR shocks are spherical

| refurn Pf'ObC‘b"'TY 1‘0 The shock for a par'hcle Ioca'red ups'rr'eam |

CR particle A
let's solve the equation for R # R
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SNR shocks are spherical

| r'e'rur-n P”Obab'“TY fo ?he shock for a par'hcle Ioca'red ups'rr'eam |

CR particle ~
let's solve the equation for R # R
O this is the constant
:*\ diffusive flux ¢ 1
=——\|\—=+1a
D \ R
this is the diffusive flux
g (11
f(Rsh) =0 _>f — -
D \R R,
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SNR shocks are spher'lcal
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SNR shocks are spherical
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SNR shocks are spher'lcal
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SNR shocks are spherical
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SNR shocks

are spherical
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SNR shocks are spherical
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particle stops being accelerated

because it escapes UPSTREAM
(instead of going back to the shock)



SNR shocks are spherical
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‘L DSA theory —> we Eomputed the return pr'obbili'ry for a plane shock |

plane shock (DSA)

Uy,
PR =12
C

pDSA _ Ysh

(Y8

this is the probability (per cycle)
that the particle stops being
accelerated because it escapes
DOWNSTREAM (inside the SNR)
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spherical shock (geometry)
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R
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this is the probability that the

particle stops being accelerated

because it escapes UPSTREAM
(instead of going back to the shock)
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this is very small

R U R U ~1 U U
] - e — (1D %1+ﬂ~1+0.03< sh )
P c R, 104 km/s

CR particle
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consequences of wha‘r sald SO far'
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SNR shocks are phemcal
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SNR shocks are phemcal

consequences of what sald so far..

this is very small

R U R U ~1 U U
] - e — (1D %1+ﬂ~1+0.03< sh )
P c R, 104 km/s

C
CR particle /

I

—> Emax goes down by ~1 order of magnitude
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Plane (infinite) versus spherical shocks

i

er'ical f g

'J plqne (infinite) \

@ particles can escape DOWNSTREAM ONLY —> escape BOTH down and up-stream
® infinite time —> arbitrarily large energy —> escape upstream limits Emax!

® an observer at Earth sees —> NOTHING! —> what escapes upstream
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Gradual release of CRs

ved |

time limited |

age

real life: usn not necessarily constant in free expansuon |’r may slowly
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How is that? Non-resonant "Bell” instability

circularly polarised

escaping CRs barely deflected
—> CR current j along Bo
—> return current in the opposite
direction

wavelength << Larmor radius

Bell 2004 ... Bell et al 2013

see also earlier works (space plasma community): Sentman+ 81, Winske & Leroy 84, Gary 93
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How is that? Non-resonant "Bell” instability

ﬂcircular‘ly polarised

escaping CRs barely deflected
—> CR current j along Bo
—> return current in the opposite
direction

wavelength << Larmor radius ll

—; X El force acting on the plasma —> expands the helical perturbation of B

(until the size of the perturbation is of the order of
the Larmor radius or magnetic tension balances it )

Bell 2004 ... Bell et al 2013

see also earlier works (space plasma community): Sentman+ 81, Winske & Leroy 84, Gary 93



A non-linear (self requlating) process...

1‘CR cur'r'en'r driven instability: a self r'egulahng mechamsm

few CRs escape j
- current is small <
=5 inefficient amplification -

E:_ less confinement G-
~=> more CRs escape ...,

- current is large <!

> efficient amplification.

more confinement

| Bell 2004 | | Bell et al. 2013 |
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Iterative methods...

assumption: pareticles with E < Emax are diffusively confined within the shock,
while particles with E > Emax can freely escape

10% SNR energy ~4
N
spectrum at the shock —> f() (p) — Ap d



Iterative methods...

assumption: pareticles with E < Emax are diffusively confined within the shock,
while particles with E > Emax can freely escape

10% SNR energy ~4
N
spectrum at the shock —> f() (p) — Ap 1

unknown

/

diffusive shock acceleration theory —> acceleration rate at pmax —> j(pmax) !



Iterative methods...

assumption: pareticles with E < Emax are diffusively confined within the shock,
while particles with E > Emax can freely escape

10% SNR energy ~4
N
spectrum at the shock —> f() (p) — Ap 1

unknown

/

diffusive shock acceleration theory —> acceleration rate at pmax —> j(pmax) !

try a pmax —> determine current j —> get B —> get a new pmax —> adjust and restart



Iterative methods...

assumption: pareticles with E < Emax are diffusively confined within the shock,
while particles with E > Emax can freely escape

10% SNR energy ~4
N
spectrum at the shock —> f() (p) — Ap 1

unknown

/

diffusive shock acceleration theory —> acceleration rate at pmax —> j(pmax) !

try a pmax —> determine current j —> get B —> get a new pmax —> adjust and restart

— i — -~ —— _ - —

'note that in the case B depends on time —> different scalins for Emax(’r)

L




Only very young SNRs accelerate to PeV
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Only very young SNRs accelerate to PeV
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Only very young SNRs accelerate to PeV
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Only very young SNRs accelerate to PeV
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3 consequences:

[J can SNR accelerate CRs up to the knee and beyond? —> most likely yes!
[J very rare events —> # of active PeV SNRs = O —> enough CRs? —> maybe not?

[J "knee” in the spectrum from one SNR at transition to Sedov



One can't have everything...

spectrum of CRs released in the ISM during the entire SNR life
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One can't have everything...

spectrum of CRs released in the ISM during the entire SNR life
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It is also worth noticing that none of the types of SNRs consid-
ered here is able alone to describe the relatively smooth CR spec-
trum that we measure over many decades in energy. In a way,
rather than being surprised by the appearance of features, one
should be surprised by the fact that the CR spectrum is so regular.

(Cristofari+ 2020)

can we
 tune it? |
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spectrum of CRs released in the ISM during the entire SNR life
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It is also th noticing that none of the types of SNRs consid-
ered here is able alone to describe the relatively smooth CR spec-
trum that we measure over many decades in energy. In a way,
rather than being surprised by the appearance of features, one
should be surprised by the fact that the CR spectrum is so regular.

(Cristofari+ 2020)



How to conclude?
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