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Charged particles and electromagnetic fields

cosmic rays are charged particles —> they are affected by electromagnetic fields

2 50

Simplifying assumption —> consider only constant fields

A particle of charge g moving at a velocity u fill experience a force:

N
ST _q<E x>
.

relativistic momentum p = fymﬁ’

Lorentz force
L to velocity —>
doesn't change
| the particle energy!
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..because we deal with plasmas

E— — _ = — — |

- to accelerate particles, you need an electric field

= E— =

An excess of electrical charge is needed to maintain a static electric field. However we
should remember...

"..a basic property of plasma, its tendency towards electrical neutrality. If over
a large volume the number of electrons per cubic centimeter deviates appreciably
from the corresponding number of positive ions, the electrostatic forces resulting
yield a potential energy per particle that is enormously greater than the mean
thermal energy. Unless very special mechanisms are involved to support such large
potentials, the charged particles will rapidly move in such a way as to reduce these
potential difference, i.e., to restore electrical neutrality.”

(Lyman Spitzer "Physics of fully ionised gases”)
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Quasi-neutrality

Each charge in a plasma is connected to any other charge through Coulomb
interactions, which are long-range interactions (potential ~ 1/R).
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Quasi-neutrality
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Quasi-neutrality

V2 = 4nnge -exp (%) — exp <_6¢)_ — dmegd(R)
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Quasi-neutrality

V2 = 4nnge -exp ( 6¢) — exp <_6¢)_ — dmegd(R)
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Quasi-neutrality: Debye length
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| Excess charges are screened on a scale called Debye length
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Way-out: time varying B

.~ We DO need electric fields o accelerate particles! |
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'd Maxwell equations ﬂ
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w =4mp =0 —> plasma quasi-neutrality

Q F_ar'aday Icﬂ

VE = o

. Ar - 10 E_’ A time varying magnetic field |

V X B = 7 acts as a source of electric field! |
¢! ot e
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Let's go back to the results obtained for the simplest accelerator

electric charge  velocity
N/
Cgmax — z UBb L r\
C
B_fzd size

4 - d& d&
| acceleration t—>l — =c—=cqE=qg U B
dacce:r'a ion rate 17 I q q

&
=5




The Hillas criterion

Let's go back to the results obtained for the simplest accelerator
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The Hillas criterion

Let's go back to the results obtained for the simplest accel’ror'
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The Hillas criterion in numbers
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Advise...

— B e —

- If you had to remember only one thing about cosmic ray acceleration, that

would probably be the Hillas criterion. However, while this criterion imposes

| necessary conditions to accelerate particles, it tells us NOTHING about
HOW particles are accelerated...

I

Note: from now on we indicate particle energies with E rather € as there is no longer ambiguity with electric field
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Fermi's notebook
December 1948
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Fermi started by considering a non-relativistic problem involving elastic collisions
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From Fermi's notebook

Fermi started by considering a non-relativistic problem involving elastic collisions
between two very different (in mass) solid bodies
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From Fermi's notebook

Fermi started by considering a non-relativistic problem involving elastic collisions
between two very different (in mass) solid bodies
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From Fermi's notebook

Fermi started by considering a non-relativistic problem involving elastic collisions
between two very different (in mass) solid bodies

| running after collision i
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Energy gain -> §m(u — 2V)2 — §mu — 2m(V2 — UV)
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From Fermi's notebook

Fermi started by considering a non-relativistic problem involving elastic collisions
between two very different (in mass) solid bodies

"l“ - - | i‘m o .
| head-on collision -> gain i | running after collision -> loss I
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AE =2m(V? +uV) - ;LUV -2m (V2 —uV) . Q_UV = 4mV*?

second order




From Fermi's notebook

Fermi ends his notes saying that for the relativistic case (u —> c) one should expect:
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From Fermi's paper

Fermi (1949, 1954)

elastic scattering
in the cloud frame
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energy of the particle in the cloud frame —> — Yo (E + VP COS 19)
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Fermi (1949, 1954)
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We now need to average over the angle 6. To do so, we need to know at which rate
particles hit the cloud for a given arrival direction.
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From Fermi's paper

Fermi (1949, 1954)
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From Fermi's paper

Fermi (1949, 1954)
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Figure from Gaisser's book
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considered as scattering centres
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Good or bad? Compare with Hillas!

Larmor radius

dE v (RL>_1
—=qvB =—| — E
C

| Hillas acceleration rate —> |}

i e

—1
zﬁ Hillas acceleration time —> I Tooe = (;) 7

T * . | _ .-H
| for any acceleration mechanism —> i Tace = Ngcc

where of course: 1) > 1
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Take a generic acceleration rate: (ii—f — b(E)
: : : : >
B E' + AFE’ E E+ AFE E
A

E+AFE=F +

subtract i’

FE = FE'" 4+ b(E)At

At = E' + AE' + b(E)At A db(E)

AFEAt

dE

db(E)
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AFE = AFE' AFEAt
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N(E,t+ At)ﬁ = N(E')t)AE'=|N(E — b(E)At, t) %
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/
N 1) — & ;g’t)b(E)At
N(E,t + A)|=|N(E, )]~ N(E,t)d[:i(g) : dNég’t)b(E)
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Particle escape

Random walk

I 2

escape after (X) scatterings

2 L2
escape time -> — <—> — — energy independent

A (L

A

C A\C
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can be tuned to get ANY spectral slope
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Problem#2: injection

= — = — m——— e e ——— — E— — — — —

. cosmic rays in the interstellar medium lose energy due to ionisation losses

_— e e

Sufficient
' acceleration

Insufficient

R AISTREIOR Two ways to overcome losses

dE

dt 2 fast acceleration rate

® some process should inject
particles at energies large
enough to overcome losses

lonisation losses

Figure from Longair's book

= = — e e . ; ——————mm———

| ’ ° ° We ° ° (1] o ¥77 i ) } | ° j
E this is known as "injection problem” and belongs to all acceleration mechanisms |
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|

| energy gain/loss in a interaction: |

Root mean square change in energy

| AE  E'—-E

= —

b b

= 2

v

C LC

N2 | 7uN 2 v\ 2 U )
(AE)? = 4F~ (—) (—) cos” J + (—) + 2— cos v
c/ |\c c c
U — C keep only second order terms in v/c

U

(AE)? = 4FE° (—)2 cos” ¥

C

average over angles as already did to derive Fermi's result

(aBP) =38 (1)

C

—cosz?+2

C

|
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Systematic versus root mean square
change in energy

| systematic —> |

d stochastic —> H \/<(AE)2> _ ﬁ

- the transport equation we just derived fakes into |
ig account only the systematic change in particle energy |

= ——

|
|
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Diffusion coefficient in energy

' sys'rema'rlc l (AFE) = gE (%)2

' advec'rlon —> H (AF) = b(E)At \

diffusion coefficient Te = A/C

| diffusion — ﬂ ((AE)?) :}Em/




A more complete transport equation

AN(E)  d N(E) 1 07
= = [H(E)N(B)) -+ 3357 Dp(E)N(E)]




A more complete transport equation




A more complete transport equation




A more complete transport equation

can we still find a power law solution? N(E) — NoE™°



A more complete transport equation

can we still find a power law solution? N(E) — NoE™°




Things to remember

Good things about the Fermi IT mechanism

B Particles are accelerated!

& Systematic(gain) plus stochastic variation of particle energies
® Power law spectra can be generated!



Things to remember

Good things about the Fermi IT mechanism

@ Particles are accelerated!
& Systematic(gain) plus stochastic variation of particle energies
® Power law spectra can be generated!

Bad things about the Fermi IT mechanism

@ It is too slow! (second order...)

& Injection problem (in fact, this is a problem of virtually any
acceleration mechanism)

¥ Need to be fine tuned. The slope of the power law depends on
physical parameters which are a priori unknown
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Maths: because it is second order! <

Physics: because particles gain energy in some collisions, and lose is in others
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Physics: because particles gain energy in some collisions, and lose is in others

ib:"—m” | i‘—:ﬁ‘— - ."
i head-on collision -> gain i ! running after collision -> loss I
- | -

ol




What's next

." Can we do something about it? i




What's next

i Can we do something about it? i

T_head-on |

running
~ after |




What's next

." Can we do something about it? i




What's next

i Can we do something about it? i
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| head-on |
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Diffusive Shock Acceleration

Shock rest frame

N

v

Up-stream ! Down-stream
Shock

Krymskii 1977, Axford et al. 1977, Blandford & Ostriker 1978, Bell 1978
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Diffusive Shock Acceleration
Symmetry

U1 — U9 (0) o Uy — U2
— 1

Up-stream Down-stream

Every time the particle crosses the shock (up -> down or down -> up), it undergoes an
head-on collision with a plasma moving with velocity ui-uz

Asymmetry

L 4
L 4
L 4
L4
’0
L 4

(Infinite and plane shock:) Upstream particles always return the shock, while
downstream particles may be advected and never come back to the shock



Universality
of diffusive shock acceleration

Let’s search for a test-particle solution

Assumption: scattering is so effective at shocks that
the distribution of particles is very close to isotropy

-> an universal solution of the problem can be found
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Rate at which particles cross the shock

Let's calculate Rj,...

n -> density of accelerated particles close to the shock

nisisotropicc dn = — df

velocity across the shock: ¢ COS(@) UP

5 27
Rin = / dn ¢ cos(f) = oo cos(6) sin(@)d@/ dy =
up—down A 0 0

-> the same result is obtained for down -> up
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Residence time upstream

-> let's find the STEADY STATE solution upstream of the shock

l—ld—l

behavior of particles is diffusive

° D(E) -> diffusion coefficient
«— v\
x very poorly constrained (from
UP \ DOWN both observations and theory)

D
cosmic ray precursor -> Tl ~constant up to lg ~ —
U1
. . Ny nlg
residence time upstream -> Typ — = 3
Rin - N C
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-> a bit more subtle...

\‘7 ------- > e N is constant downstream of the shock
| A
|
UP . DOWN
/ QEO
absorbing boundary ——— source
on 0°n
ox ox
Don
. on ox | .
we need to know the returning flux D— — Pt = —
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-> a bit more subtle...

S N is constant downstream of the shock

UP
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Residence time downstream

number of downstream particles that will return to the shock:

Dn
(07,

same expression upstream!

/ der Prei(xz) n =
0

mean residence time upstream <-> mean residence time downstream
4D 4D
UuicC UsC




Rate at which particles leave the system

— ld i} ld —

—° |«
\ /=

E—
UP DOWN

cosmic ray density n is constant downstream...

Rout — Nu2
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Bell (1978)

Bell's approach

Let's start with No particles of energy Eo...

-> # of particles starting a cycle per second: nc/4

<— 2PIAIp —

-> # of particles leaving the system per second: nuy = nu1/4

-> Probability to leave the system per cycle: U1 /C

Ui

-> Return probability to the shock per cycle: Pr =1
C

-> # of particles performing at least k cycles: N = Nj (1

AE \"
-> have an energy larger than: £ = Ej (1 - i >) = Fy (1 |
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zﬂ shock acceleration —> .
factor of \
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>>1
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] DSA is faster than Fermi IT but still (obviously) slower than H
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Particle acceleration at
relativistic shocks

Achterberg et al. (2001)
Achterberg, Lecture notes, Les Houches School (2004)
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l‘ particles are accelerated through a series of cycles up—>down—>up stream |

e

® diffusive transport —> isotropy

& energy gain per cycle —> small Agoe = AE/E — ul/c

Pesc :ul/c

1 PGSC
S = 1 1
ACLCC

® escape probability per cycle —> small

® spectral slope —> E-s
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_Ultra-relativistic shocks

| shock frame }

b2 1 =05 condition |
> 3 B
5 = —
3
A
Down-stream l Up's"‘eam For non-relativistic shocks it is
Shock

uz2=ui/4. Very naive guess:
spectra are in this case steeper
than E-2?

_relaive speed_]
6 _ 61 _ 52 _ %61
rel 1 _ 6162 B 5_%
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(1)
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- ‘ — . Shoc uz2=ui1/4. Very naive guess:
.& relative speed H spectra are in this case steeper
— " than E-2?
6 L 51 o 52 L §61 o
rel — — 2
1 — 5152 _ %1

N\ /2
(1 j ﬁ) 1 1 1
(1+ 5 ) 21’3 212 2

o2



_Ultra-relativistic shocks

| shock frame }

b2 1 =05 condition |
> 3 B
5 = —
3
A
Down-stream l Up's"‘eam For non-relativistic shocks it is
Shock

uz2=ui/4. Very naive guess:
spectra are in this case steeper
than E-2?
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Ultra-relativistic shocks: summary
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Down-stream Up-stream
Shock
will the shock catch the particle?
1 : ~ By > v, ~ cosv > ! <1—cosz9rv?9—2
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Consequences:

& particles that just crossed the shock (down—>up) are within the loss cone (~1/Ts)
& particles deflected out of the loss cone are very quickly caught by the shock
& it can be shown that the deflection outside of the loss cone is at most ~1/Ts

® Upstream particles are all directed within a cone of opening angle ~2/Ts
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J the energy gain is large!



First shock crossing: the initial boost

So far, we always considered particles entering the upstream
region crossing the shock from the downstream one —> particle
velocity upstream is very close to the shock normal (loss cone)



First shock crossing: the initial boost

So far, we always considered particles entering the upstream
region crossing the shock from the downstream one —> particle
velocity upstream is very close to the shock normal (loss cone)

" first interaction with the shock |

L i

—> the particle can move at any angle
with respect to the shock normall




First shock crossing: the initial boost

So far, we always considered particles entering the upstream
region crossing the shock from the downstream one —> particle
velocity upstream is very close to the shock normal (loss cone)

| first interaction with the shock |

L i

—> the particle can move at any angle
with respect to the shock normall

E
L =12, (1= Braaps) (1 + Braast)

(



First shock crossing: the initial boost
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First shock crossing: the initial boost

So far, we always considered particles entering the upstream
region crossing the shock from the downstream one —> particle
velocity upstream is very close to the shock normal (loss cone)

" first interaction with the shock |

L i

—> the particle can move at any angle
with respect to the shock normall

FJ-C =170 (1= Breps) (1+ Breps) ~ T2,

(

— S _ — -~ —_ —— ————— *“i

- very large boost of the energy at the first crossing! |
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ANgee = AE/E ~ F 1st crossing

® energy gain per cycle x large
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small

i'f non-relativistic shocks —> |
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;a general expression —> s =1
o In (£
E;

| very roughly: s is of the order of 2 I

more sophisticated approaches are needed to give a more accurate answer
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Residence time upstream

Up-stream frame I —
‘4 Lqr'mor' radius H

v
Ry~ -2 -

qB, qb.

a particle is overrun by the shock when it is deflected by an amount AB~1/T
. e 2rR;,  2mym 27k
| gyration time —> N TL — — — T
Lo v g5 qB.y

| residence time | b &TL L e 1
| upstream —> | "P - op sqBr 18

"\ gyration
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A. Introduction.—Two important facts support the view that cosmic
rays are of extragalactic origin, if, for the moment, we disregard the
possibility that the earth may possess a very high and self-renewing
electrostatic potential with respect to interstellar space.




Next class

P—— — — — p— ~ i o

let's focus on DSA at non-relativistic shocks (it exists!)

=5 = — o

COSMIC RAYS FROM SUPER-NOVAE

By W. BAADE AND F. ZWICKY

MoUNT WILSON OBSERVATORY, CARNEGIE INSTITUTION OF WASHINGTON AND CALI-
FORNIA INSTITUTE OF TECHNOLOGY, PASADENA

Communicated March 19, 1934

A. Introduction.—Two important facts support the view that cosmic
rays are of extragalactic origin, if, for the moment, we disregard the
possibility that the earth may possess a very high and self-renewing
electrostatic potential with respect to interstellar space.




Next class

- — == — - —— B —

a let's focus on DSA at non-relativistic shocks (it exists!)

— e o

COSMIC RAYS FROM SUPER-NOVAE

By W. BAADE AND F. ZWICKY

MoUNT WILSON OBSERVATORY, CARNEGIE INSTITUTION OF WASHINGTON AND CALI-
FORNIA INSTITUTE OF TECHNOLOGY, PASADENA

Communicated March 19, 1934

A. Introduction.—Two important facts support the view that cosmic
rays are of extragalactic origin, if, for the moment, we disregard the
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