Acoustic sensors for the new mDOM

Roxanne Turcotte, Christopher Wiebusch, Dimitry Eliseev, Dirk Heinen, Lars Weinstock, Simon Zierke, Peter Linder Plan

- Motivation
- Design
 - Mechanical
 - Electrical
- Pool Testing

IceCube upgrade towards IceCube Gen2

IceCube Upgrade

- First step toward Gen2
- Deployment of 7 strings with 125 OM each, inside DeepCore
- Low energy and oscillation physics / Ice characterisation

IceCube Gen2

- Detection of EHE events
- Volume desired of 100km³
- Large distances between the OM

² Astroparticle School 2018 - Roxanne Tucotte

mDOM and other components

Calibration devices

- Camera system
 - 3 or 4 images sensor board
 - Hole ice / Freeze process
 - Geometry calibration
- Flasher LEDs
 - Up to 9
 - Ice scattering/absorption
 - Geometry calibration
 - Known emplacement in mDOM

³ Astroparticle School 2018 - Roxanne Tucotte

Why acoustic sensors ? (we already have light sensors duh !)

Goals

- Increased distance between optical modules
 - OM positioning and orientation independent from optical devices (<1m)
- Glaciology
 - Detection crevasses, air bubble, dust, etc.
 - Long-term movement in ice and sheer
 - Characterizing the re-icing of the holes
- Hybrid detection of EHE neutrinos

⁵ Astroparticle School 2018 - Roxanne Tucotte

Design

Design

Coupling - Simulation

Material	Speed V _L	Density ρ	Impedance Z _L
	[mm/µs]	[g/cm ³]	[MRayl]
Silicone gel	1.05	1.00	1.10
Glass (silica)	5.90	2.20	13.00
Brass	4.70	8.64	40.60
Aluminium	6.38	2.73	17.41
Steel	5.9	7.8	46.00
Ероху	2.61	1.23	3.21
PZT	4.00	7.800	31.2

Fit tip

PZT, gel, epoxy

Round tip

Flat tip

Electronics

- 2 channels :
 - Narrow bandwidth around 10kHz for the positioning
 - Broader bandwidth for neutrino detection (10-100kHz)
- For now using the most recent Enex-Range electronics with improved S/N
 - Passband of 2-30 kHz
- Power consumption of one sensor is app. 71 mW (21,2mW OpAmp + microcontroller 49,5 mW)
- DATA-rate: typ. 100 kHz @ 12bit per channel

¹² Astroparticle School 2018 - Roxanne Tucotte

Swimming Pool Test

Piezo mounting

Swimming pool test - 16th July 2018

Position calibration with laser odometer

Unfiltered – Waveform differences

¹⁸ Astroparticle School 2018 - Roxanne Tucotte

Butterworth bandpass Filter

- Aimed frequency : 10 kHz
- Low band frequency : 9.7 kHz
- High band frequency : 11.3 kHz
- Order used : 3

¹⁹ Astroparticle School 2018 - Roxanne Tucotte

Filtered – Waveform differences

Sensor: 1 Channel: 1 Emitter: APU_05_1308 Travelled time: 3.95175809108 Signal shape: SineBurst:8:10000

²⁰ Astroparticle School 2018 - Roxanne Tucotte

Filtered trilateration

- Sensor emplacement are accurate with their position in the Dom
- Still have to find why the position is shifted down
- Orientation is good

Summary and outlook

Summary

- Presentation of a concept for mechanical integration
- Performed pool test on positioning performance based on EnEx sensors

Outlook

- Analysis of the pool test data
- Angular dependence
- Signal amplitude with coupling-elements

²² Astroparticle School 2018 - Roxanne Tucotte

Thank you !

Questions?

Acoustic emission by neutrinos

- Thermo-acoustic model
- Characteristic bi-pulse
- Emission in a plane perpendicular to neutrino direction

²⁵ Astroparticle School 2018 - Roxanne Tucotte

EnEx RANGE contribution

- Array of pingers (APU) emitters used to position an object (IceMole) in ice
- Knownledge carried from EnEx into IceCube

Type of coupling

- The coupling is important in acoustic waves
- The glass sphere shrinks under pressure
- Impossible to have a perfect coupling in all DOMs (different deepness = different pressure)

Ø

Coupling - Simulation

Methodology

- Harmonic wave with a pressure of 0,6 Pa
- 4 different coupling
 - Round (simulate R_{tip} < R_{sphere})
 - \circ Flat (simulate $R_{tip} > R_{sphere}$)
 - Perfect with thickness
 - No tip
- Different materials
 - Brass, Glass, Aluminum, Steel
- Transmission calculated from impedance

Coupling - Simulation

Material	Speed V _L	Density ρ	Impedance Z _L
	[mm/µs]	[g/cm ³]	[MRayl]
Silicone gel	1.05	1.00	1.10
Glass (silica)	5.90	2.20	13.00
Brass	4.70	8.64	40.60
Aluminium	6.38	2.73	17.41
Steel	5.9	7.8	46.00
Ероху	2.61	1.23	3.21
PZT	4.00	7.800	31.2

Fit tip

PZT, gel, epoxy

Round tip

Flat tip

The simulation shows that it's better with a tip with smaller radius !

Now let's look at the material

Compatibility

Aluminium

Piezo-element

Plastic PLA (for the testing setup) Brass

Teflon

Chemical compatibility test

- Mix gel with material •
- Visual inspection for optical degradation ٠
- More tests required ? ٠

Aluminum Teflon Plastic PLA Piezo-element **Brass** (for the testing setup) III. Physikalisches

Institut

APU 09 at f = 13 kHz

Angular dependency

- Strong angular dependence for only one sensor (sensor 3)
- The angular coverage seems good with 3 sensors

Pool performance - Hopefully

- 1. ch. 16 kHz to 20 kHz Positionning
- 2. ch. 10 kHz to 100 kHz Neutrino
- 50 mW (idle), 75 mW (digitalizing)
- Performance in water pool: <u>DOI:</u> <u>10.1051/epjconf/2017135</u>, ARENA 2016

