Enceladus Explorer

Radar based sounding system and navigation for a melting probe to investigate the ocean of Enceladus for signs of life

Participant Talk for Astroparticle School, Obertrubach-Bärnfels

9th of October, 2018

Alex Kyriacou

Contents

- 1. EnEx-AsGAr: Radio Based Ice Exploration
- 2. Short Range IceMole Guidance
- 3. Attenuation and Permittivity in Ice
- 4. FMCW Radar → Permittivity Measurements
- 5. Alpine Field Test
- 6. Conclusion

Enceladus Explorer

Enceladus Explorer (EnEx) is a proposed space probe to investigate Enceladus for signs of extraterrestrial life

The space probe consists of an orbiting bus and a lander which additionally carries a melting probe: 'IceMole'

The IceMole would melt through ~100 metres of ice towards a pocket of liquid water

At the water pocket IceMole will conduct testing of water for biosignatures

Enceladus Explorer

EnEx-AsGAr

Deutsch: "Abbildungssystem für Gletscherspalten in der Astrobiologie zur roboterbasierten Eis-Exploration"

English: "Image system for crevasses in astrobiology for robot-based ice exploration"

Objectives:

The development of ice-penetrating radar systems for orbiter, lander and IceMole to achieve:

1. Long-Range Mapping of Surface Ice Structure from orbit and the surface (FAU)

- Identification of landing spot
- Gauge ice depth
- Map internal structure of geyser cracks
- Identify near-surface water pockets
- 2. Short Range Ice Sounding and Navigation for the IceMole (BUW)

- Identification of obstacles: meteorites, crevasses, thick soil belts

- SAR based positioning of IceMole relative to lander

- Identification of Water Pocket from IceMole

Alex Kyriacou

IceMole Prototype

Current Prototype:

- Geometry: 15cm x 15 cm x 200 cm (prototype)
- Weight: 60 kg
- Melting Power: 1 kW (to be supplied by RTG on lander)
- Melting Speed: 1 metre/hour

Current design includes pingers (in melting head to generate acoustic waves, the backscatter of which can be measured by acoustic sensors.

→ highlights the need for a hybrid positioning system incorporating radar

Identification of Obstacles

Identification of Water Pocket

Dielectric Properties of Ice

To gauge distance to obstacle with radar (amplitude or frequency modulated) requires knowledge of relative permittivity $\boldsymbol{\varepsilon}_r$ across the used bandwidth

Permittivity $\boldsymbol{\varepsilon}_r$ is strongly linear with ice density - *Wilhelms & Frank (2018)*

Should not vary much across radio frequencies

Moderate temperature dependence

At solid ice density $\boldsymbol{\rho}_{ice} = 920 \text{ kg/m}^3 \rightarrow \boldsymbol{\varepsilon}_{r,ice} \sim 3.2$

Dielectric Properties of Ice

Radio sounding requires accurate knowledge of the refractive index $n = sqrt(\varepsilon_{r,ic})$ and attenuation rate α

At solid ice density ρ_{ice} = 920 kg/m³ $\rightarrow \epsilon_{r,ice} \sim 3.2 \rightarrow$ relatively constant across radio frequencies

Attenuation loss is dependent on the medium conductivity σ and permittivity $\varepsilon_{r,ice}$.

In ice attenuation is strongly dependent on liquid water content, temperature and presence of impurities

Attenuation increases sharply between 1 GHz and 10 GHz (*Westphal 1970*)

Challenges for Radar Sounding

Dimensions of IceMole require use of high frequency waves: ($\lambda \sim 30$ cm, $f \sim 1$ GHz)

Ice attenuation increases sharply from 1 GHz – 10 GHz \rightarrow limits range of radar

Technically difficult to incorporate antenna into IceMole:

- Deployment in the 'front' (melting head) requires an antenna material that is thermally conductive and electrically conductive, and would result in a high noise level
- Deployment at the back creates a blind-spot in the front of the probe
- IceMole would be surrounded by a layer of water vapour (from the sublimating ice) → transmission losses

Proposed design \rightarrow Dipole Antenna

Aachen University

Alex Kyriacou

Challenges for Radar Sounding

Dimensions of IceMole require use of high frequency waves: ($\lambda \sim 30$ cm, $f \sim 1$ GHz)

Ice attenuation increases sharply from 1 GHz – 10 GHz \rightarrow limits range of radar

Technically difficult to incorporate antenna into IceMole:

- Deployment in the 'front' (melting head) requires an antenna material that is thermally conductive and electrically conductive, and would result in a high noise level
- Deployment at the back creates a blind-spot in the front of the probe
- IceMole would be surrounded by a layer of water vapour (from the sublimating ice) → transmission losses

Proposed design (spiral antenna)

Aachen University

Radar Range

Radar Range

Field Test

First EnEx-AsGAr field test to be conducted at the Mittelbergferner glacier (Tyrol province, Austria)

Goals:

- Measurement of ice permittivity of the glacier as a function of depth (and density)
- Measurement of ice attenuation between 100 MHz and 2 GHz

Method:

Melting of boreholes into the ice (~ 10 m deep) at regular intervals

Placement of high-gain antennae

Transmission of FM signal between boreholes

Permittivity to be measured using FMCW method

FMCW Method

Frequency-Modulated Continous Wave Radar:

Steps:

- 1. Generate a sine wave with a continuously increasing (ramped) frequency from T antenna
- 2. Measure signal (with time-delay phase) with R antenna
- 3. Mix received signal with control signal
- 4. Take Fourier spectrum of mixed signal \rightarrow peak corresponds to antenna separation \rightarrow can use known distance to calculate the permittivity

 $\Delta f = \frac{T c R}{n R} \quad R = \frac{n B}{T c} \Delta f \quad \Delta R = \frac{c}{2 n R}$

FMCW Method – Lab Measurements

Bandwidth: 50 MHz Distance: 10 metres

Refractive Index measured with frequency shift n ~ 1.8 $\,$

Attenuation Coefficient measured from peak difference: $\alpha \sim 0.01 \text{ dB/m}$

Field Test Location

Fischer and Kuhn, 2013

First field test in February, 2019, Mittelbergferner Glacier, in the Austrian Tyrol

Glacier's depth has been mapped using low-frequency radar \rightarrow 100 metres of depth is considered sufficient for our test

Simulations for Field Test

9/10/18

Modulations

 f_{min} = 600 MHz, Bandwidth = 100 MHz, T = 1 ms

$$R = \frac{nB}{Tc} \Delta f$$

Direct transmission peak easily distinguishable

Reflection peaks significantly weaker

I3, I4 and I5 indistinguisable from background

Modulations

Summary

Knowledge of Ice Permittivity and Attenuation essential for IceMole

Detectable range of 1m² obstacle using 100 mW spiral antenna:

- 120 220 m at 500 MHz (30 cm diameter)
- 100 160 m at 1 GHz (15 cm diameter)

Detectable range of water pocket:

- 400 800 m at 500 MHz
- 300 600 m at 1 GHz

FMCW to be used to measure permittivity and attenuation across depth and frequencies

In-ice reflections and scattering unlikely to cause problems for February field test

Many technical challenges lie ahead

Questions?

Backup: Glacier vs Enceladus

Much colder temperatures on Enceladus than anywhere on Earth

Unlikely to have water content

Ice suspected to be much purer($\sigma < 1 \mu \text{Sm}^{-1}$) than on Earth

Homogenous (expect for surface layer of geyser 'snow')

Backup Slides: Distance Measurements

