

Enceladus -home of extraterrestrial life?

Pia Friend*, Alex Kyriacou

Astroparticle School 2018 Obertrubach-Bärnfels October 3rd -11th

BERGISCHE UNIVERSITÄT WUPPERTAL German DLR Aerospace Center

Just one of Saturn's icy moons?

With a position at 10 AU, Enceladus is far outside the habitable zone!

...but as we all know, aliens must exist....

Credit: John Spencer

Credit: Image.google.de

Enceladus

2

- Diameter of about 500 km
- Surface temperature of about -200 °C
- Very high albedo
- -> Due to young icy surface
- -> Geologically active body
- Moment of inertia = 0.335 (0.4 for homogenous rocks)
- -> Enceladus is a differentiated body

Enhanced colour image from Cassini. Credit: NASA

Enceladus

Differentiation of planetary bodies

Accretion of "random" material in young solar system

- Heating after accretion due to decay of short-lived (now distinct) isotopes e.g. ²⁶Al
- -> Bodies large and old enough to inherited sufficient short-lived isotopes got melted and have separated

Differentiation of planetary bodies

Earth: bulk density of ~5.5 g/cm³

Enceladus: bulk density of ~1.6 g/cm³

Cassini's discoveries I

- 2005: south polar plume (cryovulcanism) on Enceladus discovered by distant high phase imaging
 - -> Enceladus unite liquid water with thermal energy

Enhanced pseudocolour image from Cassini. Credit: NASA and Porco et al. 2016

Cassini's discoveries II

2005: 175 km flyby allowed in situ measurements of plume later in the year

friend@uni-wuppertal.de

Enceladus

7

Enceladus Explorer is a planned mission to sample Enceladus' subsurface water

- A melting probe, a.k. icemole, is going to melt its way through the icy crust
- Until it reaches a water-filled crack, supplied by the cryovulcanism
- One major task of this mission is the detection of
- A good landing side
- A waterfilled crack
- -Positioning of icemole

Enceladus

EnEx-AsGAr

Within EnEx-Project:

- Imaging of surface topography (Phase 1)
- Detection of water filled cracks (Phase 2)
- Positioning of icemole (Phase 3)
 - -> Based on radar techniques

Challenges:

Permittivity of ice

Attenuation on ice

... are unknown on Enceladus

Ice properties:	Terrestrial Glacier	Enceladus	Glacier	Enceladus
Phase	Hexagonal crystals (I _h)	Hexagonal crystals (I _h)	Snow (90% air)	Snow (100 m)
Temperature	Ca10 °C	Ca200 °C	Granular ice (50% air)	
Water content	Yes	No	Firn	Solid ice
Purity	Impure water ice	Pure water ice	(20-30% air)	
Density	30 - 900 kg/m ³	mainly 920 kg/m ³	Glacial Ice	
Layering	Complex stratification	2 layers	(<20% alr)	

- Enceladus is one of Saturn's icy moons
- But is special, because it unite liquid water and thermal energy
- Makes him one of the best candidates for extraterrestrial life
- Aim of EnEx-project: sample a subsurface water reservoir with melting probe
- Aim of EnEx-AsGAr: radar-based imaging and positioning techniques for EnEx
- -> Challenges:

How is all this related to astroparticles?

What is not related to astroparticles?

-especially when you manage to end up as a geologist in an astroparticle working group

Thanks for listening!