Investigating luminescence characteristics of ultra-purified water and ice

Sarah Pieper sarah.pieper@uni-wuppertal.de

Bergische Universität Wuppertal

9th October, 2018

BERGISCHE UNIVERSITÄT WUPPERTAL

Production of luminescence

Motivation

- Luminescence is produced in water and ice cherenkov detectors
 - Can be used as a new detection channel for particles that do not produce Cherenkov light, e.g. low-relativistic magnetic monopoles
 - Needs to be considered for the detector calibration
 - $\rightarrow\,$ Therefore the luminescence characteristics of water and ice need to be known

Goals of our investigation

Lab measurements:

- Determining luminescence characteristics for water and ice in dependance of
 - temperature
 - pressure
 - charge
 - purity

In-situ measurements:

- Determining the luminescence characteristics of Antarctica ice on site
 - \rightarrow luminescence logger

Setup for light yield measurement

- Production of luminescence light with $\alpha\text{-particles}$ from $^{241}\text{Am-source}$

Light yield results

sarah.pieper@uni-wuppertal.de

Luminescence of water and ice

doi: 10.22323/1.301.1060 9th October, 2018 6 / 16

Luminescence spectrum

- Motivation: identifying electronic transitions in molecules contributing to luminescence
- Only a few investigations have been performed so far

Choice of setup for spectral measurements

- Challenge: Very low detection rates due to low light yield
- Three different options were investigated concerning detection efficiency:
- Transmissive grating \rightarrow 0.37%
- Monochromator \rightarrow 0.077%
- Linear variable filter \rightarrow 0.46%

Experimental setup

sarah.pieper@uni-wuppertal.de

Luminescence of water and ice

Calibration of the setup

tunable light source

- Measurement of transmission curves at different positions
- Using a tunable light source with 10nm steps and a calibrated photodiode

linear variable filter-

photodiode

Deconvolution of the signal

 Convolution of the unknown spectrum s and the response function of the filter A

$$y(x) = \int A(x,\lambda) s(\lambda) d\lambda$$

- In this case discretized form is used $\overrightarrow{y} = A \cdot \overrightarrow{s}$
- First try: solve by inverting the response matrix A
- This is an ill-posed problem, uncertainties of \overrightarrow{y} and A lead to very high uncertainties in \overrightarrow{s}
- $\rightarrow\,$ Regularisation is needed

Gold iteration

sarah.pieper@uni-wuppertal.de

9th October, 2018 13 / 16

Measurement of the emission spectrum

- · First measurements show that the measured rate is still to low
- $\rightarrow\,$ New radioactive source with higher activity is needed

Outlook: Luminescence Logger

- Goal: Measure light yield and decay times of antarctica ice in different depths in the SPICE hole
- Production of luminescence with ³⁶Cl-source that emits. β -radiation
- Measurements will be performed in november 2018

- Investigation of luminescence characteristics is ongoing
- Light yield and its temperature dependence has been determined in the temperature range $-40^\circ C$ to $20^\circ C$
- Setup for measurements of luminescene spectra has been developed and calibrated
- A new source is needed for measurements of luminescence spectra
- In november 2018, a device will be send to the south pole to measure luminescence characteristics of antarctica ice on site

Jablonski diagramm

E Absorption

Measuring principle

Temperature dependency of light yield

