
Lehrstuhl für
Experimentelle Physik 5

-+

Fitting IceCube Ice Model Parameters with Gradient Descent

Alexander Harnisch
Astroparticle School 2018

October 6, 2018

Lehrstuhl für
Experimentelle Physik 5

-+

Introduction

IceCube detects neutrinos by measuring the Cherenkov light emitted
by secondary particles
For that we need precise simulations of photon propagation within
the ice
For modeling the ice we divide it into layers in z direction
There are global ice model parameters and parameters for each layer,
mainly scattering and absorption coefficients
There is a flasher board on each DOM which we use as light sources
for callibration

October 6, 2018 3 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Motivation

Fitting ice parameters by performing iterative grid searches is
extremely complex and time-consuming
We want to compute gradients of the likelihood, to be able to perform
gradient descent instead of grid searches
This might reduce the cost and improve scalability
For now we focused on bulk ice absorption coefficients
We should at least be able to verify the current best fit using this
independent method

October 6, 2018 4 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

General Idea

Fitted ParametersSimulationLoss

Gradient Optimizer

Data

Challenge: Making the red part differentiable.

October 6, 2018 5 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Photon Propagation Simulation - Before
Photon Path
DOM Hit
Point of Absorption
DOM

1. Initialize photons
2. While not hit or absorbed

2.1 Propagate photon
Hit? Stop propagation at DOM contact point
Absorbed? Stop propagation at point of
absorption
Otherwise propagate to next scattering point

2.2 Scatter photon, if not hit or absorbed
3. Output: DOM responses

See pseudo code on backup-slide 23

October 6, 2018 6 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Photon Propagation Simulation - Modified to Allow Differentiation
Photon Path
DOM Hit
Cut-off point
DOM

1. Initialize photons
2. While not hit or cut-off reached

2.1 Propagate photon
Hit? Stop propagation at DOM contact point
Cut-off reached? Stop propagation
Otherwise propagate to next scattering point
Log traveled distance in each layer

2.2 Scatter photon, if not hit or cut-off
3. Intermediate output for each hit: The DOM that was hit
and the traveled distance in each layer

Cut-off based on total travel distance and ignore all photons, that
were cut-off.

October 6, 2018 7 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Calculate DOM Response from Intermediate Result

Input: Photon travel distances Dj for each layer j and which DOM was hit for each Photon, that hit a DOM.

Calculate the probability for each photon to reach the DOM, after propagation:

pHit = 1− pAbsorbed = exp
(
−
∫ D

0

a(x)dx
)

Layer
= exp

−
NLayer∑
j=1

ajDj

 (1)

where aj is the absorption coefficient of the j-th layer.

Output: Summed hit probabilities of all photons for each DOM

si =

NHits,i∑
j=1

pHit,ij (2)

October 6, 2018 8 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Getting the Gradient

The loss F we are trying to minimize is the negative logarithm of the likelihood ratio

−F = logLRatio . (3)

We now have a direct chain between a suitable loss function F and absorption coefficients whitout any
control statements, which we can use to compute the gradient

∇~aF = · · · (4)

by using TensorFlow’s automatic differentiation (backpropagation). We could also define the gradient by
hand, which would be simple but tedious.

October 6, 2018 9 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Fitting Algorithm

Fitted

“Data” Hits

Choose FlashersPPC Modified
PPC

Expected Hits

“True”

Loss

Gradient OptimizerNode

Differentiation
Node

Forward data flow

Backward propagation

Later: Data

October 6, 2018 10 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Videos of the Learning Progress

Hyperlinks to videos:
Initial coefficients all set to 0.008m−1

10 times faster
Initial coefficiens sampled uniformly between 0.005m−1 and 0.03m−1

10 times faster

October 6, 2018 11 / 15

https://drive.google.com/open?id=1PRO4ZBW69OsWlYakXygaAykRtAhz1asp
https://drive.google.com/open?id=1GbvOR1q66ehgXsmRlJ9cbr8zJE51PDXv
https://drive.google.com/open?id=1QYtcEbeEFBGIRJI51k5Ny9CRIOBEXnJy
https://drive.google.com/open?id=1p-HYc_HjTGINjQRXL9QYtN9ifI-rNGRC

Lehrstuhl für
Experimentelle Physik 5

-+

Fit Stability Test

Idea: Fit multiple times with random initial values to check for stability
8 runs with initial coefficients sampled uniformly between 0.005m−1 and 0.03m−1

The following plots show the mean and standard deviation of the mean of those 8 fit results

October 6, 2018 12 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

1200 1400 1600 1800 2000 2200 2400 2600
Detector z / m

0.00

0.01

0.02

0.03

0.04

0.05

Ab
so

rp
tio

n
Co

ef
fic

ie
nt

 /
m

1

Fit Stability Test
True
Fitted

October 6, 2018 13 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

1900 1950 2000 2050 2100 2150 2200
Detector z / m

0.00

0.01

0.02

0.03

0.04

0.05

Ab
so

rp
tio

n
Co

ef
fic

ie
nt

 /
m

1

Fit Stability Test
True
Fitted

October 6, 2018 14 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Conclusion and Outlook
Seems to be working! We should at least be able to verify the current fit with this independent approach.

Problems:
Uncertainty on LED light output for real data
Performance: Copying stuff around GPU and CPU memory. Need for general optimization

Ideas:
Scattering: Many possible approaches

Assuming a strong correlation between absorption and scattering
Hybrid between grid search and gradient descent approach
Estimating the gradient for scattering coefficients, e.g. by resampling the arrival time for each
photon

Anisotropy: Tessellated sphere idea proposed by Martin Rongen
Possibly do hardware simulation
Use timing information

Next? Moving on towards using real data and incorporate scattering.

October 6, 2018 15 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Backup

October 6, 2018 16 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Test Setup

Two seperate PPC executables, one without absorption and the other
one unmodified to generate fake data to fit to
Using the current 3.2 best fit values to generate the fake data
The scattering coefficients are fixed to the “True” values for the fit
Anisotropy is disabled
DOM-Oversizing of 15, should be fine since we don’t use arrival time
information yet
All photons have the same wavelength of 400nm (PPC WFLA=400)
Flashing all DOMs on string 36 (inside deep core) to generate batches
Emitting 1.5 · 107 photons for each batch
All following fits were done on the same fake dataset which consists
of 347 batches

October 6, 2018 17 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

1200 1400 1600 1800 2000 2200 2400 2600
Detector z / m

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Tr
ue

Pr
ed

Tr
ue

Fit Stability Test

October 6, 2018 18 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

1600 1800 2000 2200 2400
Detector z / m

0.4

0.2

0.0

0.2

0.4

Tr
ue

Pr
ed

Tr
ue

Fit Stability Test

October 6, 2018 19 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

0.00 0.01 0.02 0.03 0.04 0.05
True Absorption Coefficient / m 1

0.00

0.01

0.02

0.03

0.04

0.05

Le
ar

ne
d

Ab
so

rp
tio

n
Co

ef
fic

ie
nt

 /
m

1

Fit Stability Test

Inside
Outside

October 6, 2018 20 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

The Problem with Differntiating the Propagation Loop

Automatic differentiation works great for arbitrarily complex programs and can deal with control
statements.
There is one caveat: Those control statements must not depend on the target parameters of the
differentiation.

In that case the structure of the program changes depending on the target parameter,
information about other branches of the program is not included in a mathematical derivative of
the one branch that was executed.
It can still work in some cases (e.g. our first results) but generally there is no guarantee for the
gradient to point in the right direction.

October 6, 2018 21 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

The Problem - Super Simple Example

Consider the following program:

def y(x):
if x == 2:

return 4
else:

return 2*x

In case of x 6= 2 automatic differentiation will provide the correct derivative of ∂y
∂x

= 2. In case of
x = 2 the derivative is 0, but we need it to be 2 in that case as well.
Automatic differentiation simply evaluates the chain rule along the executed branch of the program.
This is only fine as long as the branching does not depend on target parameters.
In this case the problem could be easily resolved by defining the gradient manually or rewriting the
program.

October 6, 2018 22 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

The Problem - Our Case
Our case looks like this (simplified pseudo code):

def simulate(photon, l_abs, l_scat):
d_abs = sample_absorption(l_abs)
while d_abs > 0 and not hit:

d_scat = sample_scattering(l_scat)
hit = check_for_hits(photon, d_scat)
if hit:

propagate_to_hit(photon)
else:

if d_abs - d_scat > 0:
propagate(photon, d_scat)
scatter(photon)
d_abs -= d_scat

else:
propagate(photon, d_abs)
d_abs = 0

During forward propagation Tensorflow counts the number of loop iterations. When backpropagating
the number of loop iterations is therefore a constant.
This means the gradient “does not know” that changing a scattering or absorption length a little bit
would lead to one more/less scattering process, even though the derivative of a single scattering
process is correct.
More on this is explained in the reference given on slide 24 and in a demonstration we wrote.

October 6, 2018 23 / 15

https://github.com/AlexHarn/tf-ice-model-optimization/blob/gradient-sign-bug/bug_test.py

Lehrstuhl für
Experimentelle Physik 5

-+

Tensorflow While Loop - Problem

Source: http://download.tensorflow.org/paper/white_paper_tf_control_flow_implementation_2017_11_1.pdf

Problem: N is a constant during backprop. P must not depend on target variables, but it does in our case.

October 6, 2018 24 / 15

http://download.tensorflow.org/paper/white_paper_tf_control_flow_implementation_2017_11_1.pdf

Lehrstuhl für
Experimentelle Physik 5

-+

Automatic Differentiation - Introduction

Set of techniques to evaluate derivatives of functions given by
computer programs
Every computer program can be broken down to a number of basic
mathematical operations
If the derivative of those operations is known, we can use the chain
rule to get the derivative of the entire program, which is the basic
idea of AD
It is not symbolic nor numerical differentiation (often confused)
Can be applied to arbitrarily complex functions, like simulations

October 6, 2018 25 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Automatic Differentiation - Forward and Reverse Mode

Two possible approaches: Forward and reverse mode
Essentially the direction in which we apply the chain rule
Reverse mode is divided into two phases: forward pass
and backward pass
Backward pass is often called backpropagation in machine
learning
We use Tensorflow, which uses reverse mode AD

October 6, 2018 26 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Automatic Differentiation Example - Computational Graph
Let’s look at a simple example

y = f(x1, x2) = 3x1x2 + ln2(x2) (5)
The computational graph looks like this

October 6, 2018 27 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Automatic Differentiation Example - Node Derivatives
We know the derivatives of every node:

October 6, 2018 28 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Automatic Differentiation Example - Forward Pass

Let’s evaluate the gradient for x1 = 2 and x2 = e2 with reverse mode AD. First we perform the forward
pass and save all the intermediate results:

Time

October 6, 2018 29 / 15

Lehrstuhl für
Experimentelle Physik 5

-+

Automatic Differentiation Example - Backward Pass

To obtain the gradient (∂y
∂x1

, ∂y
∂x2

)T we apply the chain rule by traversing the graph in reverse order:

Time

As expected by doing this we evaluate chain rule terms like ∂y
∂x1

= ∂y
∂c

∂c
∂a

∂a
∂x1

from outside to inside.

October 6, 2018 30 / 15

