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Neutrinoless double beta decay

● Possible if single beta channel is
energetically forbidden

● Only ee-nuclei (Ge76, Cd116, Xe136)
● 2nd order weak process
● Half-lives of 1018 – 1021 years
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Neutrinoless double beta decay

● Possible if single beta channel is
energetically forbidden

● Only ee-nuclei (Ge76, Cd116, Xe136)
● 2nd order weak process
● Half-lives of 1018 – 1021 years

Requirements:
● Neutrino has mass
● Neutrino is its own anti-particle
à SM-violation
à Enormous half-life

e.g. T1/2(Xe136) > 1.1 x 1026 years

à Hypothetical
à Good energy resolution crucial
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EXO-200 experiment and detector

● For the search for neutrinoless double 
beta decay in Xe136 (Q = 2.458 MeV)

● Double-sided single phase radiopure 
time projection chamber (TPC) filled
with enriched LXe (80.6% Xe136)
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● High-voltage applied between cathode 
and anodes (opposite ends)

● Event detection:
● 38 U-wire channels (charge collection)
● 38 V-wire channels (charge induction) 

(crossed at 60o)
● 74 APD channels (scintillation light)



EXO-200 event detection

● Full 3D position reconstruction with 
charge and light channel

● Two complementary measurements of 
energy deposited in event
● Scintillation light (178 nm), by large 

avalanche photo-diodes (APDs)
● Ionization charge, by 2 wire grids
à Collection signals carry energy
à Induction signals do not carry energy
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Working Principle
● Wire planes:

○ V-wires: induction signal
○ U-wires: collection signal
➔ Reconstruction of x- and y-position and charge energy

● APDs: scintillation light detection for drift time 
estimation
➔ Reconstruction of z-position and scintillation energy
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Example multiple-scatter γ event in EXO-200:
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Deep Convolutional Neural Networks

● Can extract features from simple input (e.g. raw waveforms)
à bypass hand-engineering of features
à No prior (physics) knowledge necessary

● Popular applications:
● Image recognition (shift invariant)
● Speech recognition

● Standard procedure:
● Train network on large dataset
● Validate on independent dataset
● Apply to unseen data

● For training we use simulated MC
events since we need a ‘true‘ label
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Introduction to DNN study

● Energy reconstruction from raw waveforms of charge collection (U) wires
● Event selection:

● Single (SS) and multiple (MS) charge deposits in LXe
● Energy: 500-3500 keV

● Preprocessing: 
● baseline subtraction & channel gains correction
● crop waveforms to 1024 time samples
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Architecture and Framework

Input waveform image à

● Convolutional part (extract features from image)
● Flatten feature maps
● Fully connected part (extract target variables from features)

ß Energy

● Software: Keras (with TensorFlow backend)

● Hardware: GPU Cluster (GTX1080)
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Training procedure and overtraining pitfall

● Uniform energy spectrum (blue) proves crucial for training
● Otherwise (e.g. Th228 source, green) overtraining on sharp MC peaks

● Neural network shuffles independent validation events towards sharp 
peaks from training spectrum
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Validation on Th228 MC

● Reconstruction works over the energy range under study
● Residuals w/o energy dependent features

● Resolution (σ) at the Tl208 peak full absorption peak (2615 keV):
DNN: 1.22% (SS: 0.94%)

(EXO-200 Recon: 1.29% (SS: 1.15%))
● Neural Network outperforms in disentangling

mixed induction and collection signals
(see valley right before Tl208 peak)
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Validation on Th228 calibration data

● Works on real calibration events over the energy range under study
● Residuals w/o energy dependent features

● Resolution (σ) at the Tl208 full absorption peak
when combining with scintillation channel
from EXO-200 reconstruction:

DNN: 1.65% (SS: 1.50%)
(EXO-200 Recon: 1.70% (SS: 1.61%))
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Summary

● Application of Deep Learning methods for EXO-200 works

● Training on MC events and transition to real data works

● Achieve comparable resolution using Convolutional Neural Network

● Several cross-checks support stable performance

● Charge-only energy resolution dominated by physics fluctuation rather than by
reconstruction‘s resolution

● Complementary reconstruction methods (DNN + EXO recon) allow for
improvement of both methods
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Training data and Training

● Training data:
● Simulated events
● Gamma ray source
● Detector response

uniform in energy
● Training:

● 720 000 training events
● 100 epochs

● Technical details:
● Adam optimizer
● Minimize mean square

error
● L2 regularization
● ReLU activation
● Uniform Glorot

initialization
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Validation – MC – DNN vs EXO Recon
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Validation – comparing to EXO recon

● Residuals of both methods indicate positive correlation

AT School 2018 – October, 2018 – Tobias Ziegler 20



Validation – Position dependency

● Check network performance as function of event position (SS-only events)
● Upper plots: position distribution of events. Source: (x=200,y=0,z=0)
● Right plot: distribution of residuals (EDNN – ETrue)
● Center colorbar: position-normalized distribution of residuals
● Center red: mean and (+- 1, 2) stddev of residuals with uncertainty
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Different source positions
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Combination with light channel

● Intrinsic fluctuation in LXe into scintillation and ionization channels
● Apply optimal linear combination of both channels to achieve

optimal energy estimation (standard EXO analysis procedure)
● Good shape agreement between DNN and EXO recon
● Similar energy resolution of both methods
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Combination with light channel

● Optimize rotation angle of scintillation and 
charge channel by minimizing energy 
resolution @ Tl208 full absorption peak

● Good shape agreement on other calibration
source @S5 as well
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Combination with light channel
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Deep Learning

● Machine learning algorithm (= algorithm uses experience to improve)
● Network learns data representation via multiple (= deep) hidden layers

● Can abstract from simple input (e.g. raw waveforms)
à bypass hand-engineering of features
à No prior (physics) knowledge necessary

● Many different architectures available

● Standard procedure:
● Train network on large dataset
● Validate on independent dataset
● Apply to unseen data

● For training we use simulated MC
events since we need a ‘true‘ label
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g Training (“Learning”)

1) Start with some* weights
2) Evaluate examples
3) Compute error
4) Update weights by backpropagation

and proceed with 2)

The error can be measured by

E = o � y

(o output, y target) or

E =
1
2
(o � y)2

or many other error functions E(o, y).
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Training (“Learning”)
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g Backpropagation

E =
1
2
(o � y)2

o = '(z) =
1

1 + e�z

z =
nX

i=0

xiwi = x1w1 + x2w2

Known values

Iterative optimization
(Variants of gradient descent):

wnext = w + ⌘rE(x)

How does the error function
change if a weight changes?

@E
@wi

=
@E
@o

@o
@z

@z
@wi

= (o � y)
@'(z)
@z

xi

= (o � y)'(z)(1 � '(z))xi

= (o � y)o(1 � o)xi
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Backpropagation

AT School 2018 – October, 2018 – Tobias Ziegler 28


