Proportional Scintillation in LXe

Patrick Meinhardt
Patrick.Meinhardt@physik.uni-freiburg.de

Obertrubach-Bärnfels, October 03rd – October 11th 2018
Detecting Dark Matter
Detecting Dark Matter

Collisions at the LHC

Direct detection

Indirect detection

Production at colliders

χ

P

χ

P

(cms.web.cern.ch/)
Detecting Dark Matter

Collisions at the LHC

Decay products detected by AMS02

Direct detection

Indirect detection

Production at colliders

P

χ

P

χ
Detecting Dark Matter

Dark matter enters the detector and deposits energy

Collisions at the LHC

(DMS.web.cern.ch/)

DARk matter WImp search with liquid xenoN (DARWIN)

Decay products detected by AMS02

(DMS.ams.nasa.gov/)
The DARWIN detector searches for WIMPs (Weakly Interacting Massive Particle)

40t LXe as detector material

Goal:
Sensitivity for spin-independent WIMP-nuclei interactions down to the neutrino floor
DARWIN Challenges

Challenges:
- Electron drift over long distance
- Scaling: e.g. electrodes \(\rightarrow \) diameter
- LXe mass (purification)
- Background reduction
 - \(^{222}\text{Rn}\)
 - \((\alpha, n)\) neutrons from PTFE
- Light sensors
 - stability
 - low radioactivity
 - high light yield
- ….
DARWIN Challenges

Challenges:
• Electron drift over long distance
• Scaling: e.g. electrodes \(\rightarrow \) diameter
• LXe mass (purification)
• Background reduction
 - \(^{222}\)Rn
 - \((\alpha,\text{n})\) neutrons from PTFE
• Light sensors
 - stability
 - low radioactivity
 - high light yield
• ...
Signal readout in a Time Projection Chamber (TPC)

GXe

LXe

e-•

S1

S2

+HV

GRD

-E_{drift}

-E_{amp}

GXe

LXe
Signal readout in a Time Projection Chamber (TPC)
Signal readout in a Time Projection Chamber (TPC)

- Photons along drift path
- Proportional scintillation in GXe
Electronic Recoil (ER)

\[E_0 = N_i E_i \times N_{ex} E_{ex} \times N_i \varepsilon \]
Signal readout in a Time Projection Chamber (TPC)

Electronic Recoil (ER)

\[e^-, \gamma \]

Nuclear Recoil (NR)

\[n, \text{WIMP} \]

\[E_0 = N_i E_i \times N_{ex} E_{ex} \times N_i \varepsilon \]
Electronic Recoil (ER)

\[E_0 = N_i E_i \times N_{ex} E_{ex} \times N_i \varepsilon \]

Nuclear Recoil (NR)

Signal readout in a Time Projection Chamber (TPC)

To date: Proportional Scintillation in GXe
Test this in LXe!
From dual-phase to single-phase

2.6m

GXe

GRD

d

+HV

-LXe

-HV
From dual-phase to single-phase

- anode sagging
- Amplification length changes
- impact on charge signal

\[S2 \propto \left(\frac{E}{P} - 1 \right) Pd \]
From dual-phase to single-phase
From dual-phase to single-phase

From dual-phase to single-phase
From dual-phase to single-phase

Charge signal:
- Photons at anode
- Proportional scintillation in LXe
- Strong e-field required
From dual-phase to single-phase

Charge signal:
- Photons at anode
- Proportional scintillation in LXe
- Strong e-field required

x-y-independent amplification
From dual-phase to single-phase

- LXe
- GXe

E_\text{drift}

E_\text{amp}

S1

S2

+HV

-HV

GRD
From dual-phase to single-phase

\[E = -\frac{\partial \phi}{\partial r} \mathbf{e}_r \approx \frac{\lambda}{2\pi \epsilon_0} \frac{1}{r} \mathbf{e}_r \]
From dual-phase to single-phase

- Strong e-field $O(10^3 \text{kV/cm})$
- Has been demonstrated with one single wire (arXiv:1408.6206)
 Wire diameter 10 μm

Build a single-phase TPC with a full wire grid!

\[
E = -\frac{\partial \phi}{\partial r} \vec{e}_r \approx \frac{\lambda}{2\pi \epsilon_0} \frac{1}{r} \vec{e}_r
\]
The XEBRA test platform

XEnon Based Research Apparatus

- **Cryostat:**
 - Cooling
 - LXe
 - Sensors (pressure, temperature,…)

- **Gas system:**
 - Xenon in/out
 - Purification
 - Pressure control

- **TPC in inner cryostat:**
 - Currently dual-phase
 - Inner dimensions: 7cm x Ø 7cm

- **Electronics:**
 - DAQ
 - High voltage
 - Control

Located in Freiburg
Goal:

- S2 signal independent along x-y-plane

Goal:

- Reduce 222Rn background down to 0.1 µBq/kg
Amplification with thin wires - status

Wire put under tension with weight
Stainless steal ring fixed here
Change position for additional wires
Keep wires parallel
Wire is fixed

(Bachelor thesis by Nico Strauß)
Amplification with thin wires - status

Wire put under tension with weight
Stainless steal ring fixed here
Keep wires parallel
Change position for additional wires
Wire is fixed

(Bachelor thesis by Nico Strauß)
Amplification with thin wires - status

- Full grid consisting of 19 single wires built
- Fits into the TPC

Properties:
- Gold plated tungsten
- 10 µm diameter
- 5 mm distance in between

(Bachelor thesis by Nico Strauß)
Amplification with thin wires - status

- Full grid consisting of 19 single wires built
- Fits into the TPC

Properties:
- Gold plated tungsten
- 10 μm diameter
- 5 mm distance in between

- Wire put under tension with weight
- Stainless steel ring fixed here
- Change position for additional wires
- Wire is fixed

Tested cooling with liquid nitrogen:
- None of the wires broke

Diameter hair: 100 μm
Amplification with thin wires - status

Device for high voltage tests

- Teflon for high reflectivity
- 11.5 mm drift distance from each side
- 70mm inner reflector diameter
- 1 PMT top side (R11210)
- Bottom side is closed
Amplification with thin wires - status

Device for high voltage tests

- Teflon for high reflectivity
- 11.5 mm drift distance from each side
- 70mm inner reflector diameter
- 1 PMT top side (R11210)
- Bottom side is closed

Goal:
- Operational stability of the grid
- Observe S1 + S2
Outlook and summary

What do we want:
• Single-phase TPC
 • S2 independent of x-y-plane
• Compare dual-phase TPC with single phase mode
 • Contestable?
• Understand statistics of amplification at thin wires

What do we have:
• Single wire grids are stable under effect of cooling
• HV test device is ready to maintain
Outlook and summary

What do we want:
- Single-phase TPC
 - S2 independent of x-y-plane
- Compare dual-phase TPC with single phase mode
 - Contestable?
- Understand statistics of amplification at thin wires

What do we have:
- Single wire grids are stable under effect of cooling
- HV test device is ready to maintain

Chances:
- Reduce intrinsic background of PMTs by self shielding of LXe?
- Impact on S1 threshold?
- Impact on discrimination of electronic and nuclear recoils?