Neutron star mergers Lecture II

Luciano Rezzolla

Institute forTheoretical Physics, Frankfurt
Frankfurt Institute for Advanced Studies, Frankfurt
erc
Baernfels 08-10.IO.18

Plan of the lectures

*Lecture I: brief introduction to numerical relativity

*Lecture II: brief review dynamics of merging binaries
*Lecture III: brief overview of EOS constraints from mergers
*L. Baiotti and L. Rezzolla, Rep. Prog. Phys. 80, 09690I, 2017
*V. Paschalidis, Classical Quantum Gravity 34, 0840022017
*Rezzolla and Zanotti, "Relativistic Hydrodynamics", Oxford University Press, 2013

Recap (I)

[] The $3+$ I splitting of the 4 -dim spacetime represents an effective way to perform numerical solutions of the Einstein eqs.

- Such a splitting amounts to projecting all 4-dim. tensors either on spatial hypersurfaces or along directions orthogonal to such hypersurfaces.

VThe 3-metric and the extrinsic curvature describe the properties of each slice.

I- Two functions, the lapse and the shift, tell how to relate coordinates between two slices: the lapse measures the proper time, while the shift measures changes in the spatial coords.

Recap (II)

V A number of tensor differential identities allow to cast the Einstein equations in a $3+1$ split: this is the ADM formulation.
[J Einstein equations in the ADM formulation naturally split into evolution equations and constraint equations.
[] This is not very different from Maxwell equations, where there are also evolution and constraint equations.

VThe ADM eqs are ill posed and not suitable for numerics.
V Alternative formulations (BSSNOK, CCZ4, Z4c) have been developed that are strongly hyperbolic and hence well-posed.

Recap (III)

IV Both CCZ4, Z4c formulations make use of the constraint equations and can use additional evolution equations to damp the violations
(G) The hyperbolic evolution eqs. to solve are: $6+6+(3+1)=16$. We also "compute" $3+1=4$ elliptic constraint eqs

$$
\mathcal{H} \equiv{ }^{(3)} R+K^{2}-K_{i j} K^{i j}=0, \quad \text { (Hamiltonian constraint) }
$$

$$
\mathcal{M}^{i} \equiv D_{j}\left(K^{i j}-g^{i j} K\right)=0, \quad(\text { momentum constraints) }
$$

NOTE: these eqs are not solved but only monitored to verify

$$
\|\mathcal{H}\| \simeq\left\|\mathcal{M}^{i}\right\|<\varepsilon \sim 10^{-4}-10^{-2}
$$

[J Four more equations are needed to set the gauges: lapse and shift

The two-body problem: Newton vs Einstein

The two-body problem: Newton vs Einstein

Take two objects of mass m_{1} and m_{2} interacting only gravitationally

In Newtonian gravity solution is analytic: there exist closed orbits (circular/elliptic) with

$$
\ddot{\boldsymbol{r}}=-\frac{G M}{d_{12}^{3}} \boldsymbol{r}
$$

where

$$
M \equiv m_{1}+m_{2}, \boldsymbol{r} \equiv \boldsymbol{r}_{1}-\boldsymbol{r}_{2}, d_{12} \equiv\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right| .
$$

In Einstein's gravity no analytic solution! No closed orbits: the system loses energy/angular momentum via gravitational waves.

The two-body problem in GR

-For BH s we know what to expect: $\mathrm{BH}+\mathrm{BH} \longrightarrow \mathrm{BH}+\mathrm{GW} s$

The two-body problem in GR

-For BHs we know what to expect: $\mathrm{BH}+\mathrm{BH} \longrightarrow \mathrm{BH}+\mathrm{GW} s$
-For NSs the question is more subtle: the merger leads to an hyper-massive neutron star (HMNS), ie a metastable equilibrium:
$\mathrm{NS}+\mathrm{NS} \rightarrow \mathrm{HMNS}+\ldots!\longrightarrow \mathrm{BH}+$ torus $+\ldots ? \longrightarrow \mathrm{BH}+\mathrm{GW}$

The two-body problem in GR

- For BHs we know what to expect: $\mathrm{BH}+\mathrm{BH} \longrightarrow \mathrm{BH}+\mathrm{GW}$
-For NSs the question is more subtle: the merger leads to an hyper-massive neutron star (HMNS), ie a metastable equilibrium:
$\mathrm{NS}+\mathrm{NS} \rightarrow \mathrm{HMNS}+\ldots ? \rightarrow \mathrm{BH}+$ torus $+\ldots ? \longrightarrow \mathrm{BH}+\mathrm{GW}$
- HMNS phase can provide clear information on EOS

- BH+torus system may tell us on the central engine of GRBs

The two-body problem in GR

- For BHs we know what to expect: $\mathrm{BH}+\mathrm{BH} \longrightarrow \mathrm{BH}+\mathrm{GW} s$
-For NSs the question is more subtle: the merger leads to an hyper-massive neutron star (HMNS), ie a metastable equilibrium:
$\mathrm{NS}+\mathrm{NS} \rightarrow \mathrm{HMNS}+\ldots!\rightarrow \mathrm{BH}+$ torus $+\ldots!\longrightarrow \mathrm{BH}+\mathrm{GW}$
- ejected matter undergoes nucleosynthesis of heavy elements

The equations of numerical relativity

$$
\begin{aligned}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi T_{\mu \nu}, & \text { (field equations) } \\
\nabla_{\mu} T^{\mu \nu}=0, & (\text { cons. energy } / \text { momentum }) \\
\nabla_{\mu}\left(\rho u^{\mu}\right)=0, & \text { (cons. rest mass) } \\
p=p\left(\rho, \epsilon, Y_{e}, \ldots\right), & \text { (equation of state) }
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{\nu} F^{\mu \nu} & =I^{\mu}, \quad \nabla_{\nu}^{*} F^{\mu \nu}=0, \quad(\text { Maxwell equations }) \\
T_{\mu \nu} & \left.=T_{\mu \nu}^{\text {fluid }}+T_{\mu \nu}^{\mathrm{EM}}+\ldots \quad \text { (energy }- \text { momentum tensor }\right)
\end{aligned}
$$

In GR these equations do not possess an analytic solution in the regimes we are interested in

Animations: Breu, Radice, LR

$$
\begin{array}{r}
M=2 \times 1.35 M_{\odot} \\
\text { LS220 EOS }
\end{array}
$$

merger $\longrightarrow \mathrm{HMNS} \longrightarrow \mathrm{BH}+$ torus

Quantitative differences are produced by:

- total mass (prompt vs delayed collapse)

Broadbrush picture

$M / M_{\max }, q \simeq 1$

black hole $(6-7 \mathrm{kHz})$

HMNS $(2-4 \mathrm{kHz}) \quad$ black hole $+\operatorname{torus}(5-6 \mathrm{kHz})$ black hole $(6-7 \mathrm{kHz})$

HINS $(2-4 \mathrm{kHz})$

$$
[1 \mathrm{~ms}-1 \mathrm{~s}]
$$

$$
[1-100 \mathrm{~s}]
$$

supramassive $\mathrm{NS}(1-2 \mathrm{kHz}) \quad \mathrm{NS}(2-4 \mathrm{kHz})$

ϕ

$$
\left[10^{6}-10^{7} \mathrm{yr}\right]
$$

merger $\longrightarrow \mathrm{HMNS} \longrightarrow \mathrm{BH}+$ torus

Quantitative differences are produced by:

- total mass (prompt vs delayed collapse)
- mass asymmetries (HMNS and torus)

Total mass : $3.37 M_{\odot} ; \quad$ mass ratio $: 0.80$;

* the torii are generically more massive
* the torii are generically more extended
* the torii tend to stable quasi-Keplerian configurations * overall unequal-mass systems have all the ingredients - needed to create a GRB

merger $\longrightarrow \mathrm{HMNS} \longrightarrow \mathrm{BH}+$ torus

Quantitative differences are produced by:

- total mass (prompt vs delayed collapse)
- mass asymmetries (HMNS and torus)
- soft/stiff EOS (inspiral and post-merger)
- magnetic fields (equil. and EM emission)
- radiative losses (equil. and nucleosynthesis)

How to constrain the EOS from the GWs

Anatomy of the GW signal

Inspiral: well approximated by PN/EOB; tidal effects important

Anatomy of the GW signal

Merger: highly nonlinear but analytic description possible

Anatomy of the GW signal

post-merger: quasi-periodic emission of bar-deformed HMNS

Anatomy of the GW signal

Collapse-ringdown: signal essentially shuts off.

In frequency space

Read et al. (20|3)

What we can do nowadays

Takami, LR, Baiotti (2014, 2015), LR+ (2016)

Extracting information from the EOS

Takami, LR, Baiotti (20|4, 2015), LR+ (2016)

SOFT

There are lines! Logically not different from emission lines from stellar atmospheres.

A spectroscopic approach to the EOS

Oechslin+2007, Baiotti+2008, Bauswein+ 20II, 20I2, Stergioulas+ 20II, Hotokezaka+ 2013, Takami 20I4, 20I5, Bernuzzi 20I4, 20I5, Bauswein+ 20I5, Clark+ 20I6, LR+20I6, de Pietri+ 20I6, Feo+ 2017, Bose+ 2017

merger frequency

A spectroscopic approach to the EOS

Oechslin+2007, Baiotti+2008, Bauswein+ 201I, 2012, Stergioulas+ 201I, Hotokezaka+ 2013, Takami 2014, 20I5, Bernuzzi 20I4, 2015, Bauswein+ 20I5, Clark+ 20I6, LR+20I6, de Pietri+ 20I6, Feo+ 2017, Bose+ 2017

merger frequency

Understanding mode evolution

On a short timescale after the merger, it is possible to see the emergence of f_{1}, f_{2}, and f_{3}.

Understanding mode evolution

On a long timescale after the merger, only f_{2} survives.

A mechanical toy model for the f_{1}, f_{3} peaks

-If there is no friction, system will spin between: low freq (f , masses are far apart) and high (f_{3}, masses are close).

- If friction is present, system will spin asymptotically at $f_{2} \sim\left(f_{1}+f_{3}\right) / 2$.
- analytic model possible of post merger.
- Consider disk with 2 masses moving along a shaft and connected via a spring ~ HMNS with 2 stellar cores
- Let disk rotate and mass oscillate while conserving angular momentum

A mechanical toy model for the f_{1}, f_{3} peaks

- Consider disk with 2 masses moving along a shaft and connected via a spring ~ HMNS with 2 stellar cores
- Let disk rotate and mass oscillate while conserving angular momentum
- If there is no friction, system will spin between: low freq (f_{l}, masses are far apart) and high (f_{3}, masses are close). -If friction is present, system will spin asymptotically at $\mathrm{f}_{2} \sim\left(\mathrm{f}_{1}+\mathrm{f}_{3}\right) / 2$.
- analytic model possible of post merger.

Quasi-universal behaviour

Quasi-universal behaviour: inspiral

"surprising" result: quasiuniversal behaviour of GW frequency at amplitude peak (Read+2013)
Many other simulations have confirmed this (Bernuzzi+ 2014, Takami+ 2015, LR+2016).
Quasi-universal behaviour in the inspiral implies that once $f_{\max }$ is measured, so is tidal deformability, hence $I, Q, M / R$
$\Lambda=\frac{\lambda}{\bar{M}^{5}}=\frac{16}{3} \kappa_{2}^{T}$ tidal deformability or Love number

Quasi-universal behaviour: post-merger

We have found quasiuniversal behaviour: i.e., the properties of the spectra are only weakly dependent on the EOS.

This has profound implications for the analytical modelling of the GW emission: "what we do for one EOS can be extended to all EOSs."

Quasi-universal behaviour: post-merger

- Correlations with Love number found also for high frequency peak f_{2}.
-This and other correlations are weaker but equally useful.
- Important correlation also between compactness and deformability

Radius estimate from binary population

Bose, Chakravarti, LR, Sathyaprakash, Takami (20I7)

Analytical modelling of postmerger waveform

-Postmerger appears hopeless but isn't (Clark+14, I6; Bose+ I7)

Analytical modelling of postmerger waveform

- Knowledge of spectral properties provides analytic ansatz

$$
\begin{aligned}
h(t)=\alpha \exp \left(-t / \tau_{1}\right) & {\left[\sin \left(2 \pi f_{1} t\right)+\sin \left(2 \pi\left(f_{1}-f_{1 \epsilon}\right) t\right)+\right.} \\
& \left.\sin \left(2 \pi\left(f_{1}+f_{1 \epsilon}\right) t\right)\right]+ \\
\exp \left(-t / \tau_{2}\right) & \sin \left(2 \pi f_{2} t+2 \pi \gamma_{2} t^{2}+\pi \beta_{2}\right)
\end{aligned}
$$

Analytical modelling of postmerger waveform

- Overall pretty decent fit in phase -Fit in amplitude is less good but also less important

Analytical modelling of postmerger waveform

- Good match is clear also in frequency space

In summary: despite the complex signal, an analytic description of the full GW signal is now possible.

Even a small SNR counts

- Using analytical modelling performed Fisher-matrix analysis of GWs and Monte-Carlo simulation.
-Waveforms aligned at frequency, f_{2}^{c}. Standard frequency estimation yields value of f_{2}^{c} and statistical spread.
- Quasi-universal relation between f_{2} and compactness, and error-propagation, to deduce the error in radius.
- Employed IO0 BNS signals injected in 100 uncorrelated timeseries of Gaussian noise with aLIGO sensitivity.
- Used information on f_{1} and chirp mass from inspiral.
- Repeated over 900 experiments to build statistics.

Constraining the radius: MonteCarlo vs Fisher

- uniform distribution in mass [1.21, I.38] M• between 100 and 300 Mpc; isotropic distribution in space.
- dashed lines for results of Fisher-matrix analysis with $N=50$
- errors scale like \sqrt{N}

Constraining the radius: MonteCarlo vs Fisher

- Gaussian distribution in mass [1.21, I.38] M॰ centred at $\mathrm{I} .35 \mathrm{M} \odot$ with variance 0.05 Binaries are between 100 and 300 Mpc ; isotropic distribution in space.
- dashed lines for results of Fisher-matrix analysis with $N=50$
- errors scale like \sqrt{N}

All in all

- stiff EOSs: $|\Delta R /\langle R\rangle|<10 \%$ for N~20
- soft EOSs: $|\Delta R /\langle R\rangle| \sim 10 \%$ for N~50
- discriminating stiff/soft EOSs will possible even with moderate N
- discriminating two-stiff /two-soft EOSs will be harder
-very soft EOSs remain a challenge
- golden binary: SNR ~ 6 at 30 Mpc $|\Delta R /\langle R\rangle| \lesssim 2 \%$ at 90% confidence

Recap (I)

IV GW signal from binary neutron stars depends on a number of factors: mass, mass ratio, EOS, magnetic fields, neutrino transport.
[Inspiral part is reasonably well understood and approximated with PN or EOB approaches; post-merger much more complex.
V Spectra of post-merger shows clear "quasi-universal" peaks.
IU Unless binary very close, peaks have SNR ~ I. However, multiple signals can be stacked and SNR will increase coherently.
IV Fisher-matrix and Monte-Carlo simulations can be performed combining information from inspiral and post-merger:

- stiff EOSs: $|\Delta R /\langle R\rangle|<10 \%$ for $N \sim 20$
- soft EOSs: $|\Delta R /\langle R\rangle|<10 \%$ for $N \sim 50$
- very soft EOS will be a challenge for aLIGO-Virgo (ET?)

