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 The 3+1 splitting of the 4-dim spacetime represents an 
effective way to perform numerical solutions of the Einstein eqs.

 Such a splitting amounts to projecting all 4-dim. tensors 
either on spatial hypersurfaces or along directions orthogonal 
to such hypersurfaces. 

The 3-metric and the extrinsic curvature describe the 
properties of each slice.

 Two functions, the lapse and the shift, tell how to relate 
coordinates between two slices: the lapse measures the proper 
time, while the shift measures changes in the spatial coords.

Recap (I)



 A number of tensor differential identities allow to cast the 
Einstein equations in a 3+1 split: this is the ADM formulation.

Einstein equations in the ADM formulation naturally split into 
evolution equations and constraint equations.

 This is not very different from Maxwell equations, where 
there are also evolution and constraint equations.

The ADM eqs are ill posed and not suitable for numerics.

Alternative formulations (BSSNOK, CCZ4, Z4c) have been 
developed that are strongly hyperbolic and hence well-posed.

Recap (II)



Both CCZ4, Z4c formulations make use of the constraint 
equations and can use additional evolution equations to damp 
the violations

 The hyperbolic evolution eqs. to solve are: 6+6+(3+1) = 16. 
We also “compute” 3+1=4 elliptic constraint eqs

Recap (III)

NOTE: these eqs are not solved but only monitored to verify

Four more equations are needed to set the gauges: lapse 
and shift



The two-body problem: Newton vs Einstein



The two-body problem: Newton vs Einstein
Take two objects of mass       and       
interacting only gravitationally 

m1 m2

r̈ = �GM

d3
12

r

where M � m1 + m2 , r � r1 � r2 , d12 � |r1 � r2| .

In Newtonian gravity solution is analytic: 
there exist closed orbits (circular/elliptic) with

In Einstein’s gravity no analytic solution! No closed orbits: the 
system loses energy/angular momentum via gravitational waves. 



The two-body problem in GR
•For BHs we know what to expect: 
  BH + BH             BH + GWs 

Abbott+ 2016

GW150914



The two-body problem in GR
•For BHs we know what to expect: 
  BH + BH             BH + GWs 

•For NSs the question is more subtle: the merger leads to an 
hyper-massive neutron star (HMNS), ie a metastable equilibrium: 

NS + NS        HMNS+... ?       BH+torus+... ?       BH + GWs



The two-body problem in GR
•For BHs we know what to expect: 
  BH + BH             BH + GWs 

•BH+torus system may tell us 
on the central engine of GRBs

artist impression (NASA)

Wex 2016

•HMNS phase can provide 
clear information on EOS 

•For NSs the question is more subtle: the merger leads to an 
hyper-massive neutron star (HMNS), ie a metastable equilibrium: 

NS + NS        HMNS+... ?       BH+torus+... ?       BH + GWs



The two-body problem in GR
•For BHs we know what to expect: 
  BH + BH             BH + GWs 

•ejected matter 
undergoes 
nucleosynthesis of 
heavy elements

•For NSs the question is more subtle: the merger leads to an 
hyper-massive neutron star (HMNS), ie a metastable equilibrium: 

NS + NS        HMNS+... ?       BH+torus+... ?       BH + GWs



The equations of numerical relativity

Rµ⌫ � 1

2
gµ⌫R = 8⇡Tµ⌫ , (field equations)

rµT
µ⌫ = 0 , (cons. energy/momentum)

rµ(⇢u
µ) = 0 , (cons. rest mass)

p = p(⇢, ✏, Ye, . . .) , (equation of state)

(Maxwell equations)

Tµ⌫ = T fluid
µ⌫ + T

EM

µ⌫ + . . .

r⌫F
µ⌫ = Iµ , r⇤

⌫F
µ⌫ = 0 ,

(energy �momentum tensor)

In GR these equations do not possess an analytic solution 
in the regimes we are interested in



Animations: Breu, Radice, LR

M = 2⇥ 1.35M�

LS220 EOS



merger           HMNS           BH + torus



Quantitative differences are produced by:

• total mass (prompt vs delayed collapse)

merger           HMNS           BH + torus



Broadbrush picture

proto-magnetar? FRB?



Quantitative differences are produced by:

• mass asymmetries (HMNS and torus)

• total mass (prompt vs delayed collapse)

merger           HMNS           BH + torus



Animations: Giacomazzo, Koppitz, LR

Total mass : 3.37 M�; mass ratio :0.80;



✴ the torii are generically more massive
✴ the torii are generically more extended 
✴ the torii tend to stable quasi-Keplerian configurations
✴ overall unequal-mass systems have all the ingredients 
needed to create a GRB



Quantitative differences are produced by:

• mass asymmetries (HMNS and torus)

• total mass (prompt vs delayed collapse)

• soft/stiff EOS (inspiral and post-merger)

• magnetic fields (equil. and EM emission)

• radiative losses (equil. and nucleosynthesis)

merger           HMNS           BH + torus



How to constrain the EOS 
from the GWs



binary black holes (2006)

Anatomy of the GW signal



binary black holes (2006)

Anatomy of the GW signal

Chirp signal



binary black holes (2006)

Anatomy of the GW signal

Chirp signal
black-hole 
ringdown
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Anatomy of the GW signal
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Inspiral: well approximated by PN/EOB; tidal effects important

Anatomy of the GW signal

Chirp signal
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Merger: highly nonlinear but analytic description possible

Anatomy of the GW signal

transient
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post-merger: quasi-periodic emission of bar-deformed HMNS

Anatomy of the GW signal

post-merger 
(HMNS)
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Collapse-ringdown: signal essentially shuts off.

Anatomy of the GW signal

black-hole 
formation 
(ringdown)



In frequency space

Read et al. (2013)
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What we can do nowadays
Takami, LR, Baiotti (2014, 2015), LR+ (2016)
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Takami, LR, Baiotti (2014, 2015), LR+ (2016)

Extracting information from the EOS

SOFT

STIFF
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This is GW spectroscopy!

Takami, LR, Baiotti (2014, 2015), LR+ (2016)

Extracting information from the EOS

SOFT

STIFF



merger 
frequency

Oechslin+2007, Baiotti+2008, Bauswein+ 2011, 2012, Stergioulas+ 2011, Hotokezaka+ 2013, Takami 
2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, Clark+ 2016, LR+2016, de Pietri+ 2016, Feo+ 
2017, Bose+ 2017 …

f3

A spectroscopic approach to the EOS



Oechslin+2007, Baiotti+2008, Bauswein+ 2011, 2012, Stergioulas+ 2011, Hotokezaka+ 2013, Takami 
2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, Clark+ 2016, LR+2016, de Pietri+ 2016, Feo+ 
2017, Bose+ 2017 …

A spectroscopic approach to the EOS

f3
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Understanding mode evolution
On a short timescale after the merger, it is possible to 
see the emergence of f1, f2, and f3. 

�1.0 �0.5 0.0 0.5 1.0

t [ms]

�1.0

�0.5

0.0

0.5

1.0

�3

�2

�1

0

1

2

3

h
+

⇥
10

22
[5

0
M

p
c] M̄ = 1.300 M�, GNH3

�1 0 1 2 3

1

2

3

f
[k

H
z]

f3

f2,i

fspiral

f1
f2-0

fmax

�40
�35
�30
�25
�20
�15
�10
�5
0
5

10
lo

g 1
0

⇣
10

22
h̃

+
(t

,f
)

[5
0

M
p
c]

⌘

�1.0 �0.5 0.0 0.5 1.0

t [ms]

�1.0

�0.5

0.0

0.5

1.0

�4

�2

0

2

4

h
+

⇥
10

22
[5

0
M

p
c] M̄ = 1.300 M�, APR4

�1 0 1 2 3

2

3

4
f

[k
H

z]
f3

f2,i

fspiral

f1 f2-0

fmax

�40
�35
�30
�25
�20
�15
�10
�5
0
5

10
lo

g 1
0

⇣
10

22
h̃

+
(t

,f
)

[5
0

M
p
c]

⌘



�1.0 �0.5 0.0 0.5 1.0

t [ms]

�1.0

�0.5

0.0

0.5

1.0

�3

�2

�1

0

1

2

3

h
+

⇥
10

22
[5

0
M

p
c] M̄ = 1.300 M�, GNH3

0 5 10 15 20 25

1

2

3

f
[k

H
z]

f3

f2,i
f2

fspiral

f1
f2-0fmax

�40
�35
�30
�25
�20
�15
�10
�5
0
5

10
lo

g 1
0

⇣
10

22
h̃

+
(t

,f
)

[5
0

M
p
c]

⌘

�1.0 �0.5 0.0 0.5 1.0

t [ms]

�1.0

�0.5

0.0

0.5

1.0

�4

�2

0

2

4

h
+

⇥
10

22
[5

0
M

p
c]

M̄ = 1.300 M�, APR4

0 5 10 15 20 25

2

3

4

f
[k

H
z]

f3

f2,i f2

fspiral

f1 f2-0

fmax

�40
�35
�30
�25
�20
�15
�10
�5
0
5

10
lo

g 1
0

⇣
10

22
h̃

+
(t

,f
)

[5
0

M
p
c]

⌘

Understanding mode evolution
On a long timescale after the merger, only f2 survives. 



•If there is no friction, system will spin 
between: low freq (f1, masses are far 
apart) and high (f3, masses are close).

•If friction is present, system will spin 
asymptotically at f2~ (f1+f3)/2.

•Consider disk with 2 masses moving 
along a shaft and connected via a 
spring ~ HMNS with 2 stellar cores

•Let disk rotate and mass oscillate 
while conserving angular momentum

A mechanical toy model for the f1, f3 peaks

• analytic model possible of post 
merger.



•If there is no friction, system will spin 
between: low freq (f1, masses are far 
apart) and high (f3, masses are close).

•If friction is present, system will spin 
asymptotically at f2~ (f1+f3)/2.

• analytic model possible of post 
merger.

A mechanical toy model for the f1, f3 peaks
•Consider disk with 2 masses moving 
along a shaft and connected via a 
spring ~ HMNS with 2 stellar cores

•Let disk rotate and mass oscillate 
while conserving angular momentum



Quasi-universal behaviour



Many other simulations have 
confirmed this (Bernuzzi+ 2014, 
Takami+ 2015, LR+2016) .

“surprising” result: quasi-
universal behaviour of GW 
frequency at amplitude peak 
(Read+2013)
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Quasi-universal behaviour 
in the inspiral implies that 
once fmax is measured, so is 
tidal deformability, hence 
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Quasi-universal behaviour: inspiral



Quasi-universal behaviour: post-merger

We have found quasi-
universal behaviour: i.e., 
the properties of the 
spectra are only weakly 
dependent on the EOS.
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LS220 This has profound 
implications for the 
analytical modelling of the 
GW emission: “what we 
do for one EOS can be 
extended to all EOSs.”



•Correlations with Love 
number found also for high 
frequency peak f2.

•This and other correlations 
are weaker but equally useful.
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Quasi-universal behaviour: post-merger
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•Important correlation also between 
compactness and deformability



Radius estimate from 
binary population
Bose, Chakravarti, LR, Sathyaprakash, Takami (2017)



•Postmerger appears hopeless but isn’t (Clark+14, 16; Bose+17)

Analytical modelling of postmerger waveform



•Knowledge of spectral properties provides analytic ansatz

h(t) = ↵ exp(�t/⌧1)
⇥
sin(2⇡f1t) + sin(2⇡(f1 � f1✏)t)+

sin(2⇡(f1 + f1✏)t)
⇤
+

exp(�t/⌧2) sin(2⇡f2t+ 2⇡�2t
2 + ⇡�2) .

Analytical modelling of postmerger waveform



•Overall pretty 
decent fit in phase

•Fit in amplitude is 
less good but also 
less important

Analytical modelling of postmerger waveform



•Good match is 
clear also in 
frequency space

In summary: 
despite the 
complex signal, an 
analytic description 
of the full GW 
signal is now 
possible.

Analytical modelling of postmerger waveform



Even a small SNR counts 
• Using analytical modelling performed Fisher-matrix 
analysis of GWs and Monte-Carlo simulation.

•Waveforms aligned at frequency,    . Standard frequency 
estimation yields value of     and statistical spread.

f c
2

f c
2

•Quasi-universal relation between    and compactness, 
and error-propagation, to deduce the error in radius. 

f2

•Employed 100 BNS signals injected in 100 uncorrelated 
timeseries of Gaussian noise with aLIGO sensitivity.

•Used information on    and chirp mass from inspiral.f1

•Repeated over 900 experiments to build statistics.



Constraining the radius: MonteCarlo vs Fisher
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•Gaussian distribution in 
mass [1.21, 1.38] M⦿ 
centred at 1.35 M⦿  with 
variance 0.05 Binaries 
are between 100 and 
300 Mpc; isotropic 
distribution in space.

• dashed lines for results 
of Fisher-matrix analysis 
with N=50

•errors scale like 
p
N

Constraining the radius: MonteCarlo vs Fisher



All in all
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•stiff EOSs:                            for 
N~20 

•soft EOSs:                            for 
N~50 

•discriminating stiff/soft EOSs will 
possible even with moderate N

•discriminating two-stiff /two-soft 
EOSs will be harder 

•very soft EOSs remain a challenge
•golden binary: SNR ~ 6 at 30 Mpc               
                       at 90% confidence

|�R/hRi| < 10%

|�R/hRi| ⇠ 10%

|�R/hRi| . 2%



GW signal from binary neutron stars depends on a number of 
factors: mass, mass ratio, EOS, magnetic fields, neutrino transport. 
Inspiral part is reasonably well understood and approximated 
with PN or EOB approaches; post-merger much more complex.
Spectra of post-merger shows clear ”quasi-universal” peaks.
Unless binary very close, peaks have SNR ~ 1. However, multiple 
signals can be stacked and SNR will increase coherently.
Fisher-matrix and Monte-Carlo simulations can be performed 
combining information from inspiral and post-merger:

 stiff EOSs:                         for N~20 
 soft EOSs:                         for N~50 
 very soft EOS will be a challenge for aLIGO-Virgo (ET?)

|�R/hRi| < 10%

|�R/hRi| < 10%

Recap (I)


