Search for High-Energy Neutrinos from Tidal Disruption Events (TDEs)

Astroparticle School 2018

Robert Stein

The dawn of Multi-messenger Astronomy

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

р

They are weak, neutral particles that point to their sources and carry information from deep within their origins.

Earth

· **v** :

air shower

Cosmic rays

black

holes

They are charged particles and are deflected by magnetic fields.

Introducing the IceCube Neutrino Observatory...

What does IceCube actually see?

Cascades

Tracks

What does IceCube actually see?

Cascades

The neutrino sky...

The neutrino sky...

Fermi Blazars?

Fermi Blazars?

Fermi Blazars?

Gamma-Bright GRBs?

Fermi Blazars?

Gamma-Bright GRBs?

Fermi Blazars?

Gamma-Bright GRBs?

Core-Collapse Supernovae?

Fermi Blazars?

Gamma-Bright GRBs?

Core-Collapse Supernovae?

TXS 0506+56 ???

Fermi Blazars?

Gamma-Bright GRBs?

Core-Collapse Supernovae?

Supernova
Remnants?Pulsar-Wind
Nebulae?Fast Radio
Bursts?Galactic
Center?Mrk 421?Galactic Plane?1ES 1959+650?Fermi
Bubbles?

TXS 0506+56 ???

An Introduction to Tidal Disruption Events...

• They're giant, star-eating black holes...

- They're giant, star-eating black holes...
- ...and also extreme cosmic accelerators

- They're giant, star-eating black holes...
- ...and also extreme cosmic accelerators
- IceCube is built to probe extreme cosmic accelerators through Neutrino detection

Building a TDE Catalogue...

• Catalogue based on https://tde.space/

Building a TDE Catalogue...

- Catalogue based on https://tde.space/
- Jetted TDEs, like "transient blazars", launch relativistic jets pointed towards us (3)

Building a TDE Catalogue...

- Catalogue based on <u>https://tde.space/</u>
- Jetted TDEs, like "transient blazars", launch relativistic jets pointed towards us (3)
- Non-jetted TDEs, like AGN, can still produce neutrinos through e.g. winds or choked jets. However, catalogues can be contaminated by AGN or SN.
 - **Gold TDEs** are reliably-classified TDEs with multiple spectra (13)
 - Silver TDEs are less clear "TDE candidates" (24)
 - **Obscured TDEs** are detected only via reprocessed IR emission, so there is a delay between disruption and peak. (13)

An Unbinned Likelihood "Stacking Analysis"

"Box" Time PDF matching EM observations

Assume sources share a spectral index, and perform likelihood minimisation

Fit weights of each source individually -> No assumptions for neutrino distribution

Sensitivities for one sub-catalogue

But what about the REALLY interesting ones?

- Will analyse four interesting TDEs individually
- Two are jetted TDEs, at favourable declinations
 - Swift J1644+57
 - Swift J2058+05
- Two more are reliable, nearby and bright:
 - ASASSN-14li
 - XMMSL1 J0740-85
- All with radio detections -> Relativistic Particles!
- Can search for temporal clustering on shorter timescales -> "Neutrino Flare"

Flare Searching...

Each "significant event" is a potential start or end point for a flare

Test each potential flare, and return most significant of all flares

Threshold for Discovery...

Summary + Outlook

- IceCube has found a diffuse astrophysical neutrino flux, but not the origin of the flux
- TDEs are a promising untested neutrino source class
- Will test groups of TDEs, and search for time-clustered neutrino flares for four interesting TDEs
- We are sensitive to neutrino energies which are comparable to multiwavelength observations for TDEs
- Analysis will hopefully be unblinded in the next month!

