

## **Dark Matter** (and direct searches for it)

School for Astroparticle Physics 2018 Obertrubach-Bärnfels

Marc Schumann, University of Freiburg marc.schumann@physik.uni-freiburg.de

### Content

| • | Dark Matter      | 1        | Evidence for Dark Matter                                                                             | Wed |
|---|------------------|----------|------------------------------------------------------------------------------------------------------|-----|
|   |                  | 2a<br>2b | The Standard Halo Model<br>Dark Matter Candidates                                                    |     |
| • | Direct Detection | 3<br>4   | Basics:<br>Rates and signatures<br>Backgrounds:<br>Sources, reduction                                | Thu |
| • | Detectors        | 5<br>6   | Crystals, cryogenic, directional detectors<br>Nal, Germanium<br>Cryogenic liquids<br>Xenon and Argon | Fri |

#### Some Literature (incomplete!)

- Perkins: Particle Astrophysics, Oxford University Press
- Bertone (ed): Particle Dark Matter, Cambride University Press
- Bertone, Hooper: A History of Dark Matter, arXiv:1605.04909
- Lewin/Smith: Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil, pa.brown.edu/articles/Lewin\_Smith\_DM\_Review.pdf
- Baudis: Direct Dark Matter Detection, arXiv:1211.7222
- Schumann: *Dark Matter 2014*, *arXiv:1501.01200*
- Marrodan/Rauch: *Direct Detection Experiments, arXiv:1509.08767*
- Heusser: Low-radioactivity background techniques, http://fizisist.web.cern.ch/fizisist/research/Low-RadioactivityBackgroundTechniques.pdf

## 1 Evidence for dark matter

- There is evidence for dark matter at all length scales
  - $\rightarrow$  from the virial theorem and Galaxy clusters
  - $\rightarrow$  the rotation curve of galaxies
  - $\rightarrow\,$  precision cosmology with the CMB
- The ΛCDM Model is the "standard model of cosmology".
  - $\rightarrow$  it describes the Universe with only 6 parameters
  - $\rightarrow$  one of the parameters is the dark matter density

### Coma Cluster

 $R \sim 2 \times 10^{6} \text{ LY} \\ = 1.9 \times 10^{22} \text{ m}$ 

 $<v^2> \sim 5 \ge 10^{11} \text{ m}^2/\text{s}^2$ 











# **Spiral Galaxies**



### Use HI regions



### M33



#### **Galactic Rotation Curves**





#### V. Rubin:



## The Milky Way



## Discovery of the CMB





Nobel prize 1978



Arno Penzias

MAP990045

Robert Wilson

#### What is the CMB?



### CMB: The "surface of last scatter"



The cosmic microwave background Radiation's "surface of last scatter" is analogous to the light coming through the clouds to our eye on a cloudy day. We can only see the surface of the cloud where light was last scattered

#### DMR 53 GHz Maps



#### CMB is remarkably isotropic → perfect black body spectrum

#### $\Delta T/T = 10^{-3}$

→ large dipole visible from Doppler effect since Earth is moving wrt the CMB

 $\Delta T/T = 10^{-5}$ 

→ primoridial fluctuations become visible strong signal from Milky Way



## Analyzing the CMB





 $t = 600..1000 \rightarrow -0.25^{\circ}$ 

#### The Planck spectrum





Abhängigkeit der CMB-Fluktuationen von kosmologischen Parametern. In allen Fällen ist das Referenzmodell beschrieben durch  $\Omega_m + \Omega_A = 1$ ,  $\Omega_A = 0.65$ ,  $\Omega_b h^2 = 0.02$ ,  $\Omega_m h^2 = 0.147$ und einer Steigung des primordialen Dichtespektrums n = 1, entsprechend dem Harrison–Zeldovich-Spektrum. In den vier Darstellungen wird jeweils einer dieser vier Parameter variiert, während die anderen drei festgehalten werden

## CMB – 1<sup>st</sup> peak and curvature



- The apparent (angular) size of the spots gives access to the information which sets of lines the light followed.
- The location of the main peak in the spectrum determines the average spot size: flat universe – main peak at *t*~220 negatively curved Universe ("open") → shifted to right positively curved Universe ("closed") → shifted to left

#### **GEOMETRY OF THE UNIVERSE**









OPEN



FLAT



#### CLOSED

#### The 3rd CMB Peak – Dark Matter



## $\Lambda CDM Model$

The Standard Model of Cosmology ("Concordance Model")

Describes the Universe since the Big Bang with a few parameters only (6)

Uses Friedmann equation to describe evolution of Universe since Inflation

Agrees with the most important cosmological observations:

- CMB Fluctuation
- Large Scale Structures
- Accelerated Expansion (SN observations)
- Distribution of H, D, He, Li



Ingredients:

- Λ Cosmological Constant
- CDM Cold Dark Matter

The six parameters are (WMAP 7, Komatsu et al. 2008):

- physical baryon density,  $\Omega_b h^2 = 0.026 \pm 0.00053$ ,
- 2 physical dark matter density,  $\Omega_c h^2 = 0.1123 \pm 0.0038$ ,
- dark energy density,  $\Omega_{\Lambda} = 0.728^{+0.015}_{-0.016}$ ,
- ( scalar spectral index,  $n_s = 0.963 \pm 0.012$ ,
- Solution curvature fluctuation amplitude,  $\Delta_{\mathcal{R}}^2 = 2.441^{+0.088}_{-0.097} \times 10^{-9}, k_0 = 0.002 Mpc^{-1}$
- **(**) reionization optical depth,  $\tau = 0.087 \pm 0.014$

## 2 The standard halo model + DM Candidates

- The simplest expression for the galactic dark matter halo is the isothermal sphere
  - → standard halo model = isotropic, isothermal sphere of dark matter with Maxwellian velocity distribution
- Large N-body simulations tell us about the validity and the limitation of the model
  - → NFW density profile
  - $\rightarrow$  core-vs-cusp in the galaxy center?
- Dark Matter Candidates
  - → no known candidate
  - → need new physics

### **GHALO** Simulation



dark matter distribution within the inner 200kpc of our Galactic halo

### Check velocity distribution



### Cold vs hot dark matter



Dark Matter-only simulation

time

## **Galactic Density Profiles**



cored isothermal profile:

$$\rho_{\rm BS}(r) = \frac{\rho_0 a^2}{r^2 + a^2} \not$$

profile from fits to 100s of rot. Curves:

$$\rho_{\rm PS} = 
ho_0 rac{a^2(r^2 + 3a^2)}{3(r^2 + a^2)^2},$$

From numerical simulations... Navarro, Frenk & White:

$$o_{\mathrm{NFW}}(r) = rac{
ho_s r_s^3}{r(r+r_s)^2},$$

Moore (a bit steeper):

$$ho_{
m Moore}(r) = rac{
ho_s r_s^3}{r^{3/2}(r+r_s)^{3/2}}.$$

→ All show the same behavior at larger radii, main difference in the center

defines where radial dependence changes from 1/r to  $1/r^3$ . The observed  $1/r^2$  is seen only approximately.

avoids the divergence at r=0 and leads to a flat inner core

# Simulations vs Observations

#### Cusp-Core Problem

Simulations predict a cuspy galactic center, while observations indicate large cores

 Missing satellite problems ("too big to fail problem") ACMD simulations predict satellite galaxies, which are not observed (Milky way: has ~50 while ~500 are expected)

Carlos Frenk: There is no problem!



## Important: Baryonic Feedback



2 important observations when baryons are included:

- Galaxy center becomes less cuspy → flatter core
- cored halos are more easily tidally disrupted  $\rightarrow$  expect fewer satellites

### Dark Matter Candidates

#### What is dark matter????



# Why not Baryonic (Dark) Matter?

- too little:  $\Omega_{\rm h} < 0.05$
- Big Bang Nucleosynthesis fixes Ω<sub>b</sub> quite precisely (+CMB) (1940s: Gamov, Alpher, Herman)
  - abundances of light elements depend on baryon/photon ratio
  - D production is most sensitive
- not collisionless
- not found in microlensing searches
- Black Holes? → No



#### EROS

EROS, MACHO, OGLE

# Microlensing with OGLE

![](_page_35_Figure_1.jpeg)

- Polish project started 1992
- telescope located in Chile
- main targets: GMC and galactic bulge
- some MACHOs and extrasolar planets found so far

# **Primordial Black Holes?**

Can primordial black holes (PBH) formed in the big bang be the dark matter?

![](_page_36_Figure_2.jpeg)

constraints in 10-100 Msun range (LIGO):

#### - PBHs cannot constitute >0.01% of dark matter

*but*: new discussion about PBH dark matter started maybe PBH not dark matter but faster merger rate Astrophys.J. 680, 829 (2008) PRL 116, 201301 (2016) PRL 117, 061101 (2016)

#### 40

# **Primordial Black Holes?**

- If PBH of 10-300 Msun are all DM, expect hundrets of BH mergers in first LIGO run (detected: 5)
  - → PBHs can only be 1% of DM PRD 96, 12 (2017)
- No microlensing of Magellanic cloud stars detected
  - → strong constraints on PBHs of 10–8-10 M<sub>sun</sub> being DM MACHO: Astrophys. J. Lett. 550, L169 (2001) OGLE: Mon. Not. R. Astron. Soc. 416, 2949 (2011)
- New: no microlensing of >1300 SN1a observed
  - → PBHs of >0.01 M<sub>sun</sub> (up to largest masses) cannot account for >40% of the DM PRL 121, 141101 (2018)

![](_page_37_Picture_8.jpeg)

![](_page_37_Figure_9.jpeg)

# Why not Neutrinos?

Neutrinos are a part of the SM

- collisionless
- massive ( $\rightarrow \nu$ -oscillations)
- produced in the early Universe: decouple at kT ~ 3 MeV  $n_v \sim 115 \text{ cm}^{-3}$
- compare with critical density

 → neutrinos can make up the entire energy content of the Universe if

 $\sum_{e,\mu,\tau} m_{\nu} c^2 = 44 \text{eV}$ 

![](_page_38_Picture_8.jpeg)

## Large Scale Structures

BUT: neutrinos move too far and too fast (decoupling at kT=3 MeV)

$$v_{\nu} = \frac{p_{\nu}c^2}{E_{\nu}} \approx \frac{10^{-4} \text{ eV}}{m_{\nu}c}$$

 $\sum m_{
u}c^2<$  0.1 eV

From direct vemass limit; v oscillations; Planck data

⇒ hot Dark Matter

The smallest scale with "clumpy" structure sets a lower limit on the particle mass:

low mass

- → high speed (if created thermally)
- → travels large distances
- → scale on which density perturbations are washed out

Probing small scale structures at  $z\sim3$ :  $m_{DM} \ge 2$  keV

![](_page_39_Figure_12.jpeg)

Non baryonic DM:

new particles or "old" particles with non-standard properties

![](_page_40_Picture_2.jpeg)

stolen from Gianfranco Bertone

# (Some) Dark Matter Candidates

![](_page_41_Figure_1.jpeg)

- Axion
- WIMPs
  - Neutralino
  - (LKP)
- sterile neutrinos

## **DM Production**

Two production mechanisms:

| Thermal Production                                      | Non thermal production              |
|---------------------------------------------------------|-------------------------------------|
| In thermal equilibrium with the Universe ("freeze out") | Production in a<br>Phase Transition |
| → WIMPs                                                 | → Axions                            |

Candidates for non-baryonic DM must be

- stable on cosmological time scales (otherwise they would have been decayed by now)
- must interact very weakly (otherwise would not be considered as Dark Matter)
- must have the right relic density (=amount of DM)

Note: There is a 3<sup>rd</sup> production mechanism at very large T, soon after or soon before inflation. These particles are usually superheavy, e.g. Wimpzillas

## WIMPs

- Weakly Interacting Massive Particles
- Some of the best motivated candiates from "new" physics
- WIMPs interact only via gravity and weak (new?) interactions
- WIMPs are somewhat similar to neutrinos, but far more massive (>GeV) and slower
- sub-GeV WIMPs could be Light Dark Matter

![](_page_43_Picture_6.jpeg)

• Why are weak scale masses/interactions interesting??

## **Thermal WIMP Production**

#### "The WIMP Miracle"

- suppose WIMP candidates  $\chi$  can be created/annihilated in pairs
- assume that the  $\chi$ 's are in thermal eq. with all light particles

 $rac{dn_{\chi}}{dt}+rac{3}{2}Hn_{\chi}=-\langle\sigma_Av
angle_T\left[\left(n_{\chi}
ight)^2-\left(n_{\chi}^{eq}
ight)^2
ight],$ 

- number density  $n_{\chi}$  follows the Boltzmann equation:

dilution by Universe expansion annihilation cross section

• when  $T < m_{\chi}$ , pair creation needs  $\chi$  from tail of *v*-distribution  $\rightarrow$  in equilibrium, number density falls exponentially

$$n_{eq} \propto (mT)^{3/2} \exp\left[\frac{-m_{\chi}c^2}{kT}\right]$$

## **Thermal WIMP Production II**

When the annihilation rate  $N\chi \langle \sigma v \rangle < expansion rate H$ , the probability for  $\chi$  to find a partner for annihilation becomes small

expanding Universe: "freeze out" WIMPs fall out of equilibrium, cannot k, annihilate anymore

$$_{\rm B}T \sim \frac{m_{\chi}c^2}{20}$$

- $\rightarrow$  non relativistic when decoupling from thermal plasma
- → constant DM relic density
- $\rightarrow\,$  relic density depends on  $\sigma_{_{\!\!\!\!\!\Delta}}$

#### WIMP relic density:

$$\Omega_{\chi}h^2 \approx {\rm const.} \frac{T_0^3}{M_{Pl}^3 \left< \sigma_A v \right>} \approx \frac{0.1 {\rm pb}}{\left< \sigma_A \ v/c \right>}$$

O(1) when  $\sigma_{\Delta} \sim 10^{-36} \text{ cm}^2 \rightarrow \text{ weak scale}$ 

![](_page_45_Figure_10.jpeg)

## The 10 Points Test for new Particles

![](_page_46_Figure_1.jpeg)

stolen from Gianfranco Bertone, arXiv:0711.4996